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A Application to Two Problems in Empirical Finance

In this section, we outline the application of the permutation tests that we study and our asymp-
totic approximations to their power to two problems in Empirical Finance. First, we apply the
permutation tests that we develop to test the weak form efficient market hypothesis in the spirit of
Fama (1965). Second, we discuss the application of these methods to tests of persistence in the
performance of mutual funds relative to benchmark portfolios.

A.1 Tests of the Weak Form Efficient Market Hypothesis

There is a large literature in finance that aims to assess weak-form market efficiency by studying
the serial dependence in asset returns (Fama, 1970; Malkiel, 2003). In a classical analysis, Fama
(1965) argues that tests of the randomness of sequences of stock returns give tests of the weak-form
efficient market hypothesis.1 He concludes that there is limited evidence of serial dependence, but
makes no formal quantification of uncertainty.

In this Section, we briefly discuss a component of Fama’s analysis, outline the application of
the methods that we develop to this problem, and provide an example of their implementation on
two datasets of sequences of stock prices. In our discussion, we will assume that the reader is
familiar with the results developed in Sections 2, 3, and 4 of the main text. Our goal is not to break
theoretical or empirical ground, but to provide an additional illustration of our methods.

A.1.1 Discussion of Fama (1965)

Fama (1965) studies approximately five years of daily prices for each of thirty stocks on the Dow-
Jones Industrial Average (DJIA). In Section 5 of his paper, Fama tests the independence of the
signs of log price changes at one, four, nine, and sixteen trading-day intervals. In particular, Fama
compares the observed number of runs of the signs of log price changes (i.e., the number of times
that the sign of a log price change switches on consecutive intervals) to the expected number of
runs under i.i.d. sampling for each stock. Although there is no formal quantification of uncertainty,
Fama finds that there are more runs of signs of log price changes than would be expected under
i.i.d. sampling at daily intervals, but that the observed and expected number of runs of signs of log
price changes are very close for four, nine, and sixteen trading-day price intervals.

A.1.2 Methods

The statistical framework and inferential methods developed in the main text are applicable to this
problem. In fact, in Online Appendix I.1 we show that the test applied by Fama – the Wald and
Wolfowitz (1940a) runs test – is asymptotically equivalent to the individual permutation tests that
we develop in Section 3 of the main text with the test statistics D̂n,k (Xi) and P̂n,k (Xi)− p̂n,i with
k = 1, defined in (2.4) and (2.5) of the main text. Our asymptotic power approximations, derived

1This analysis is extremely influential, holding 13,106 Google scholar citations on September 3rd 2020.
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in Section 4, allow us to analyze the power of our methods – and the Wald-Wolfowitz Runs test –
applied to this setting against particular alternatives.

Specifically, suppose that we observe price sequences for s stocks. Each observation of a price
is separated from its two adjacent price observations by a time interval t, e.g., if t equals four
trading days we say that prices are observed with a time interval of four trading-days. For each
stock, we observe prices for n + 1 consecutive time intervals. Let {vij}n+1

j=1 denote the vector of
observed prices for stock i.

Following Fama (1965), we test the null hypotheses that the sequences of the signs of log price
changes are independent and identically distributed for each stock. Formally, let

Xij =

{
1 if log

(
vi(j+1)

)
− log (vij) > 0

0 otherwise,

Xi = {Xij}nj=1 , and X = {Xi}si=1. We are interested in testing the individual null hypotheses

H i
0 : Xi is i.i.d.

against alternatives in which the parameters θkP (Pi) and θkD (Pi), defined in (2.2) and (2.3) in
the main text, are not equal to zero for some integer k.2 We assume Xi follows a stationary
Bernoulli(pi) process Pi for each i.

Additionally, we estimate and construct confidence intervals for the parameters θkP (Pi) and
θkD (Pi). We estimate these parameters with the estimators P̃n,k (Xi) and D̃n,k (Xi), defined in (3.3)
in the main text, respectively. These estimators are bias-corrected under the joint null hypothesis
H0. We construct confidence intervals for θkP (Pi) and θkD (Pi) with

P̃n,k (X) ±σP (p̂n,i, k)
z1−α/2√

n
(A.1)

and
D̃n,k (Xi)± σD (p̂n,i, k)

z1−α/2√
n
, (A.2)

respectively. These confidence intervals are valid under stationary alternatives contiguous to H0.
In our main application to controlled basketball shooting experiments, when implementing

tests of the joint null hypothesis

H0 : Xi is i.i.d. for each i in 1, . . . , s,

we operate under the assumption that the individual shooting sequences Xi are independent across

2Note that in our application to controlled basketball shooting experiments, we consider alternatives in which θkP (Pi)
and θkD (Pi) are positive (i.e “streaky” alternatives) because these alternatives are implied by models of the “belief in
the law of small numbers”. In this case, the theory that we are testing does not discipline the signs of the alternatives
that we are testing against. Thus, we consider two sided alternatives. For two-sided alternatives, p-values can be
estimated by taking two times the minimum of the two one-sided p-values.
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individuals. In this setting, the equivalent assumption – that Xi are independent across stocks – is
not realistic, as companies will be exposed to common macroeconomic or sectoral shocks. Thus,
the methods for joint hypothesis testing developed in Sections 3 and 4 of the main text provide
a test of the hypotheses that the sequences Xi are i.i.d. and independent across stocks, which is
significantly stronger than the weak-form efficient market hypothesis. Hence, we do not apply
these methods in this section.3

However, the methods that we develop for testing the individual hypotheses H i
0, and our ap-

proximations to their power, are applicable to this context and are of substantive interest. In most
of his analyses, Fama (1965) displays statistics computed for all of the individual stocks separately
or highlights statistics computed on individual stocks. Moreover, a rejection of an individual hy-
pothesis H i

0, robust to correction for multiple testing, is strong evidence against weak-form market
efficiency.4

In fact, for this application, simultaneous tests of the individual hypotheses H i
0 are arguably

of greater interest than joint tests of H0. Specifically, Fama (1965) aims to assess whether there
is information in past price patterns that can be leveraged profitably by investors. If an investor
is able to leverage deviations in randomness in stock price profitably, then necessarily they have
been able to identify which stocks deviate from randomness; knowing only that there exists some
non-random stocks is insufficient.

A.1.3 Data

We construct two datasets of sequences of stock prices.

Panel of Daily Prices for DJIA Components: In the spirit of Fama (1965), we collect a dataset
of daily prices for 30 stocks on the Dow Jones Industrial Average (DJIA) between January 1st,
2000 and December 31st, 2019. To construct this dataset, we obtain a list of the 30 stocks that
composed the DJIA on April 2nd, 2019.5 In this list, we replace Visa with Hewlett-Packard, as
Visa had its initial public offering on March 19th, 2008 and replaced Hewlett-Packard in the DJIA
in 2013. To obtain a complete panel, we make a set of assumptions concerning the changes of

3One approach to a randomization test for H0 that imposes weaker restrictions on the dependence between the se-
quences Xi for different companies, would be to apply the same permutation to each Xi when recomputing joint test
statistics. This imposes the restriction that Xi,j and Xi′,j′ are independent for i 6= i′ and j 6= j′. It may be possible
to apply the arguments developed in Sections 3 and 4 to approximate the power of this methods, but this is beyond
the scope of our analysis.

4Again, the method for simultaneous inference on the individual hypotheses Hi
0, outlined in Section 3.2 applied in our

analysis of controlled basketball shooting experiments, assumes that the tests of Hi
0 are independent. As this is not

the case in this setting, we apply the standard Bonferroni correction., i.e., p-values are compared to α/s rather than to
α. For more powerful tests, the stepdown method of Romano and Wolf (2005) can be considered, but this is beyond
the scope of our analysis in this section.

5This list was derived from the map of securities on the DJIA available at https://us.spindices.com/indexology/djia-
and-sp-500/the-changing-djia, accessed on September 1st, 2020.
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stock ticker names coincident with mergers, acquisitions, and spin-offs.6 Data on daily closing
prices (or bid/ask averages if closing prices are unavailable) for these stocks for active trading days
between January 1st, 2000 and December 31st, 2019 are obtained from the CRSP (2020) Daily
Stock Security Files through the Wharton Research Data Services (WRDS). Closing prices and
bid/ask averages are treated identically. Holidays and weekends are treated the same as consecutive
trading days, e.g., Fridays and Mondays are treated as consecutive trading-days.

Again, following Fama (1965), we construct panels of the signs of log price changes with one,
four, nine, and sixteen trading-day intervals between consecutive prices. We begin each panel on
the earliest observed trading day (January 3rd, 2000). These are considerably larger panels than
were analyzed in Fama (1965), who studied approximately five years of data. There are 5030,
1257, 558, and 314 observations of the sign of log price change Xij at one, four, nine, and sixteen
trading-day intervals for each stock, respectively.

Intraday Prices for the DJIA Index: In order to obtain a larger sample than the panel of daily
prices, and to consider a setting without the constraints of multiple comparisons, we acquire a
dataset with minute by minute closing prices for the DJIA index between May 1st, 2007 and
September 2nd, 2020 from FirstRate Data.7 We treat end-of-day closing prices as adjacent to be-
ginning of day closing prices, i.e., we append the daily price sequences to make one long sequence.
For this dataset, to maximize power and for the sake of parsimony of presentation, we only con-
sider panels with one minute time intervals. We consider the sequence of prices for the year 2010.
There are 101,969 observations of the sign of log price change Xj for this sample (we omit the
subscript i as there is only one sequence).

A.1.4 Results

Panel of Daily Prices for DJIA Components: Figure 1 displays p-values of the individual per-
mutation tests that use the test statistics D̂n,k (Xi) and P̂n,k (Xi)− p̂n,i, defined in (2.4) and (2.5),
for each interval and each k in 1, . . . , 4 for the panel of daily prices of DJIA components. The
p-values for tests that use D̂n,k (Xi) and P̂n,k (Xi) − p̂n,i are displayed in green and blue, respec-
tively. The x-axis is displayed with a log scale base 10. Vertical black lines are placed at 0.05,
0.1/30, and 0.05/30. As there are 30 stocks in our sample, an estimated p-value less than α/30

6We associate Chevron with the ticker CHV for January 1st, 2000 through October 9th, 2001 and with CVX for the
remainder of the panel. We associate Verizon with the ticker BEL for January 1st, 2000 through June 30th, 2000 and
with VZ for the remainder of the panel. We associate The Travelers Companies with the tickers SPC for January
1st, 2000 through April 1th, 2004, STA for April 2th, 2004 through February 26th, 2007, and TRV for the remainder
of the panel. We associate Walgreens Boots Alliance with the ticker WAG for January 1st, 2000 through December
30th, 2014 and WBA for the remainder of the sample. We associate Dow with the tickers DD for January 1st, 2000
through August 31st, 2017, DWDP for September 1st, 2017 through May 31st, 2019, and DOW for the remainder of
the sample. We associate Hewlett-Packard with the ticker HWP for January 1st, 2000 through May 3rd, 2002 and with
HPQ for the remainder of the sample.

7The data were purchased from FirstRate Data (2020) on September 3rd, 2020.
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indicates a rejection of the individual null hypothesis H i
0 with the Bonferroni method with control

of the familywise error rate at level α.
No individual hypothesis is rejected by the Bonferroni method at level α = 0.05 or 0.1. Overall,

the p-values increase as the trading-day interval increases and as k increases. Six and four individ-
ual hypotheses have p-values less than 0.05 for the tests using D̂n,k (Xi) and P̂n,k (Xi) − p̂n,i for
k = 1 with single trading-day intervals, respectively. Again, the number of individual hypothesis
with p-values less than 0.05 decrease as k increases and the trading-day interval increases. These
results broadly match the conclusions of Fama (1965), who notes some weak evidence against
randomness for daily trading intervals and no indication of deviations from randomness for longer
trading-day intervals.

Intraday Prices for the DJIA Index: Panel A of Figure 2 overlays the realized values of
D̂n,k (X) and P̂n,k (X) − p̂n,i for the sequence of one minute DJIA index intraday prices for each
k in 1, . . . , 4 on their permutation distributions, displayed with horizontal black to white gradients.
The 2.5th and 97.5th quantiles of these distributions are denoted by vertical blue and green lines,
respectively. The observed statistics are denoted with vertical black lines. The two-sided p-values
of the permutation tests are displayed to the right of the corresponding permutation distributions.
For D̂n,k (X), there is a a strong rejection of the null hypothesis H0 for each k. For P̂n,k (X)− p̂n,i,
there is a strong rejection of the null hypothesis with k = 1, but the p-value increases with k.

Panel B of Figure 2 plots the realizations of the estimators P̃n,k (X) and D̃n,k (X) for the one
minute DJIA Index intraday price sequence and the normal approximation confidence intervals,
given in expressions (A.1) and (A.2), for each k in 1, . . . , 4. The values of the realizations of
P̃n,k (X) and D̃n,k (X) are displayed to the right of the corresponding confidence intervals. These
estimates increase with k for D̃n,k (X) and decrease with k for P̃n,k (X).

A.1.5 Power

In Section 4 of the main text, we obtain an asymptotic approximation to the power of tests of the
hypotheses H i

0 using the individual test statistics P̂n,k (Xi) − p̂n,i and D̂n,k (Xi), defined in (2.4)
and (2.5) of the main text, against a specific Markov chain alternative.

We make a series of conservative assumptions to obtain rough upper bounds to the power
of these tests implemented on the two datasets outlined in Online Appendix Section A.1.3. To
discipline this exercise, we inspect the unconditional distributions the means of the signs of the
log price changes Xij over given time intervals. First, we compute the mean of the signs of the
log price changes Xij for each stock i in each of the twenty years in each of our four panels of
daily prices for DJIA components, i.e., we compute the proportion of positive log price increases
for each stock in each year at each interval. Table 1 displays quantiles of the distributions of these
statistics for each interval, taken over the collection of stocks and years. Second, we compute the
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Online Appendix Figure 1: Permutation Tests of Individual Null Hypothesis H i
0 for the Panel Daily Prices

for DJIA Components

k = 1 k = 2 k = 3 k = 4

Interval =
 1

Interval =
 4

Interval =
 9

Interval =
 16

0.001 0.010 0.100 1.000 0.001 0.010 0.100 1.000 0.001 0.010 0.100 1.000 0.001 0.010 0.100 1.000
P−Value (Log Scale)

D̂n,k(Xi) P̂n,k(Xi)
0.05 Bonferonni (0.05) Bonferonni (0.10)

Notes: Figure displays two-sided p-values for the individual permutation tests using the test statistics D̂n,k (Xi) and
P̂n,k (Xi)− p̂n,i for each k in 1, . . . , 4 and for each choice of interval length. The p-values computed using D̂n,k (Xi)

are displayed in green and the p-values using P̂n,k (Xi) − p̂n,i are displayed in blue. The x-axis is displayed with
a log scale base 10. The black vertical dotted line denotes 0.05. The black vertical dashed and dot-dashed lines
denote the thresholds for rejection of the individual hypotheses with the Bonferroni multiple testing correction at level
0.1 and 0.05, respectively. We estimate the permutation distribution of D̂n,k (Xi) and P̂n,k (Xi) − p̂n,i under Hi

0

by permuting each of the Xi’s 100,000 times separately and recomputing D̂n,k (Xi) and P̂n,k (Xi) − p̂n,i for each
permuted collection of sequences. The p-values are computed by taking 2 times the minimum the proportions of
recomputed statistics smaller than and larger than the observed values of D̂n,k (Xi) and P̂n,k (Xi)− p̂n,i.
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Online Appendix Figure 2: Permutation Tests of the Individual Null Hypothesis H0 and Normal Approxi-
mation Confidence Intervals for θkP (P) and θkD (P) for One Minute DJIA Index Intraday Prices

Panel A: Permutation Tests of Individual Null Hypotheses H i
0

P−Value:

0.000

0.000

0.000

0.000

P−Value:

0.000

0.051

0.493

0.450

D̂n,k(X) P̂n,k(X)

−0.05 0.00 0.05 0.10 −0.05 0.00 0.05 0.10

1

2

3

4

k

2.5th Quantile 97.5th Quantile Observed Statistic

Panel B: Normal Approximation Confidence Intervals

Estimate:

0.026

0.034

0.045

0.076

Estimate:

0.016

0.009

−0.005

−0.009

D̂n,k(X) P̂n,k(X)

0.00 0.04 0.08 0.00 0.04 0.08

1

2

3

4

k

Notes: Panel A displays the observed values of D̂n,k (X) and P̂n,k (X)− p̂n,i for the one minute DJIA Index Intraday
Prices overlaid onto their permutation distributions under H0 for each k in 1, . . . , 4. The observed values of D̂n,k (X)

and P̂n,k (X) − p̂n,i are indicated by black vertical line segments. The estimated 2.5th and 97.5th quantiles of the
permutation distributions are denoted by vertical line segments, respectively. We estimate the permutation distributions
with 100, 000 permutations. The estimates of the permutation distributions are displayed in horizontal white to black
gradients. The p-values of the two-sided test of H0, computed as 2 times the minimum the proportions of recomputed
statistics smaller than and larger than the observed values of D̂n,k (X) and P̂n,k (X) − p̂n,i, are reported to the right
of each distribution. Panel B displays the observed values of P̃n,k (X) and D̃n,k (X) for the one minute DJIA Index
Intraday Prices and the normal approximation confidence intervals given in expressions (A.1) and (A.2) for each k in
1, . . . , 4.
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Quantile

Interval .25 .33 .50 .66 .75

1 0.486 0.494 0.508 0.524 0.536

4 0.492 0.500 0.524 0.556 0.571

9 0.481 0.500 0.556 0.593 0.607

16 0.467 0.500 0.563 0.625 0.625

Online Appendix Table 1: Quantiles of the Distributions of the Yearly Proportions of Positive Log Price
Changes at Different Time Intervals for Thirty Stocks in the DJIA

Notes: Table displays quantiles of the distributions of the yearly proportions of daily positive log price changes for
thirty stocks on the DJIA between 2000-2020. For each stock at each interval, we compute the proportion of positive
log price increases in each year. The Table gives the quantiles of the distributions of these proportions for each interval,
taken over the collection of stocks and years.

mean of signs of the log price changes Xj for the sequence of one minute DJIA Index Intraday
prices in each trading-day between 2010 and 2020. Table 2 displays quantiles of the distributions
of these statistics for each interval, taken over days.

Suppose that for each stock in the sample, the unconditional probability of a positive log price
change is one half. By inspection of Tables 1 and 2, this assumption appears to be reasonably
accurate for most stocks in the daily panel and for the intraday index. Furthermore, suppose the
stocks have a 100 · ε% higher (lower) probability of a positive log price change after m consecutive
positive (negative) log price changes than they would unconditionally. This is an instance of the
Markov chain alternative model of a “streaky” individual developed in the main text in Section 4.1.

Figure 3 displays our asymptotic approximation to the power of the permutation test of an
individual hypothesis H i

0 at level α = 0.05 using the test statistic D̂n,k (Xi) against this alternative
over a grid of ε, for m = k for k in 1, . . . , 4, and for n equal to its value for the panels of daily
prices of DJIA components constructed at each interval. Without placing further restrictions on the
dependence between the sequences Xi, this is a strict upper bound to the probability of rejecting at
least one null hypothesis H i

0 with the Bonferroni method with control of the familywise error rate
at level α = 0.05. Figure 3 displays an analogous figure for the sequence of intraday prices for the
DJIA index.

In both cases, we target power against two values of ε. The vertical dotted line denotes the value
of ε that corresponds to half the distance between the 33rd and 66th quantiles of the distributions
of the proportions of positive log price changes at each interval displayed in Tables 1 and 2. The
vertical dot-dashed line gives the equivalent distance between the 25th and 75th quantiles. As we
are not fundamentally interested in targeting deviations from randomness that occur after streaks
of a given length, we consider m = 1 as a benchmark. Note that the limiting power of tests with
k = 1 is equal to the limiting power of the Wald-Wolfowitz runs test, applied implicitly in Fama
(1965).
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Quantile

.25 .33 .50 .66 .75

0.415 0.427 0.444 0.462 0.474

Online Appendix Table 2: Quantiles of the Distributions of the Daily Proportions of Positive Log Price
Changes at One Minute Intervals for the DJIA Index

Notes: Table displays quantiles of the distributions of the daily proportions of one minute positive log price changes
for the DJIA index between 2010-2020. We compute the proportion of one minute positive log price increases in each
day. The Table gives the quantiles of the distributions of these proportions for each interval, taken over the collection
of stocks and years.

In the case of the panel of daily prices for DJIA components, individual tests of H i
0 with

m = k = 1 have relatively large power, particularly for the larger value of ε. This power decreases
rapidly as k and m increase. Thus, the individual hypothesis tests implemented in the Online
Appendix Section A.1.4 on this dataset – considered in isolation – have reasonable power against
alternatives consistent with the variation in stock returns with m and k equal to one. As the tests of
H i

0 are not perfectly dependent, the power of the multiple hypothesis test of the thirty hypotheses
H i

0 against theses alternatives will likely be considerably smaller. As the panel of daily prices that
we have constructed in this Section is at least four times as large as the panel studied in Fama
(1965), this result indicates that the simultaneous analysis in Fama (1965) is underpowered.

In the case of the sequence of intraday prices for the DJIA index, the test of the individual
hypothesis H0 has power very close to one for m = k between 1 and 4 against both of the values
of ε that we consider. This exercise highlights the fact that very large datasets are necessary for
individual tests to have substantial power.

A.2 Tests of Persistence in the Performance of Mutual Funds

The objective of a large literature in empirical finance is to determine whether there is persistence
in the performance of particular mutual funds relative to market indices (Jensen, 1968; Hendricks
et al., 1993; Carhart, 1997). Motivated by the literature on the hot hand fallacy, Hendricks et al.
(1993) specifically aim to assess whether mutual fund managers “delivering sustained short-run
superior performance have ‘hot hands’,” noting evidence from Hendricks et al. (1997) documenting
that investors move their money to funds that have performed well relative to benchmarks in recent
periods. They argue that if they are unable to reject the null hypothesis that there is persistence
in the performance of mutual funds relative to market indices, then these patterns in investment
provide evidence of systematic misperception of randomness consistent with the hot hand fallacy.

Hendricks et al. (1993) study the quarterly returns for 165 growth-oriented mutual funds be-
tween 1974 and 1988. The number of funds observed each quarter varies and diminishes over
time. The number of observations of quarterly returns per mutual fund is at most 56. In robust-
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Online Appendix Figure 3: Power of Joint Tests of H0 Using D̄k (X) Against the Markov Chain Streaky
Alternative with k = m by Interval Length for the Panel Daily Prices for DJIA Components

Interval = 16

Interval = 9

Interval = 4

Interval = 1

0.00 0.02 0.04 0.06 0.08

0.00
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1.00
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0.25

0.50
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1.00
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P
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k and m: 1 2 3 4

1/2 Quantile Distance: 25th and 75th 33rd and 66th

Notes: Figure displays asymptotic approximations to the power of the stratified permutation tests of the joint null
hypothesis H0 using the test statistic D̂n,k (Xi) against the Markov chain streaky alternative specified in Section 4.1
of the main text over a grid of ε, for m = k for k in 1, . . . , 4, and for n equal to its value for the panels of daily prices
of DJIA components constructed at each interval. An expression for this asymptotic approximation is given in Online
Appendix Corollary H.3, with h = ε

√
n. The vertical dotted and dot-dashed lines denote the value of ε that correspond

to half the distance between the 33rd and 66th quantiles and the 25th and 75th quantiles of the distributions of the yearly
proportions of positive log price changes at each interval.
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Online Appendix Figure 4: Power of Joint Tests of H0 Using D̄k (X) Against the Markov Chain Streaky
Alternative with k = m by Interval Length for One Minute DJIA Index Intraday Prices
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Notes: Figure displays asymptotic approximations to the power of the stratified permutation tests of the joint null
hypothesis H0 using the test statistic D̂n,k (Xi) against the Markov chain streaky alternative specified in Section 4.1
of the main text over a grid of ε, for m = k for k in 1, . . . , 4, and for n to its value for sequence of intraday prices for
the DJIA index. An expression for this asymptotic approximation is given in Online Appendix Corollary H.3, with
h = ε

√
n. The vertical dotted and dot-dashed lines denote the value of ε that correspond to half the distance between

the 33rd and 66th quantiles and the 25th and 75th quantiles of the distributions of the daily proportions of one minute
positive log price changes.
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ness checks, they examine selected subsamples of this data. They find that there is positive and
significant short-term persistence, but that this persistence diminishes over longer intervals.8

While Hendricks et al. (1993) measure persistence by computing the autocorrelation of the dif-
ference between the returns to each fund and the returns to an index, our methods are applicable to
this setting, albeit with a somewhat different approach and interpretation. Rather than considering
makes and misses in basketball shooting, one can consider a indicator variable for whether a mu-
tual fund beats an index. Our asymptotic power approximations derived in Section 4 allow us to
analyze the power of the permutation tests that we study in this application.

Tests of the individual hypotheses H i
0 – that the sequences of indicators for whether mutual

fund i beats an index – against alternatives in which θkP (Pi) and θkD (Pi), defined in (2.2) and (2.3)
of the main text, are greater than zero assess whether the performance of the manager of mutual
fund i deviates from randomness. The methods that we develop in Section 3 for testing the joint
null hypotheses H0 assess whether the performance of any mutual fund manager deviates from
randomness and whether the performance of mutual fund managers is dependent across managers.
The latter hypothesis – independence in relative returns across managers – is perhaps less con-
tentious than its equivalent in the case of the stock price sequences considered in Online Appendix
A.1, but is substantially less convincing than its equivalent in the case of controlled basketball
shooting experiments.

Similarly to the case of the stock price sequences considered in Online Appendix A.1, the
multiple comparison problem is potentially of greater interest in this setting than the joint hypoth-
esis H0. If investors are able to successfully determine which mutual fund managers “have the
hot hand”, then they necessarily can identify which mutual funds have performance records that
deviate from randomness.

We make a series of conservative assumptions to obtain an upper bound to the power of individ-
ual tests applied to this problem. Suppose that for all mutual funds in the sample, the unconditional
probability that they beat the index is one half. From Table A.II of the Appendix to Hendricks et al.
(1993), we can see that average over mutual funds of the average quarterly differences between the
returns to each mutual fund and two indices (Jensen’s α) are −0.28% and −1.25% with interquar-
tile ranges of 1.24% and 1.48%. Thus, our assumption appears to be approximately true for one
index (the value weighted CRSP index of NYSE and AMEX stocks) and is an overestimation for
the other index (the equally weighted CRSP index of NYSE stocks). Furthermore, suppose that
mutual funds have a 5% higher (lower) probability of beating the index following a period in which
they beat (lost to) the index. Ideally, we would like to compute the distribution of the proportion of
the time that each fund beats the index to inform these parameter choices, but this information is
not readily available. Finally, we take an upper bound by assuming that we observe 56 daily prices
for each stock.

The power of permutation tests of the individual hypotheses H i
0 that we consider with the best

suited choice of test statistic implemented on a sequence of returns for one mutual fund in the data

8However, Carhart (1997), who constructs a significantly larger data set of mutual fund returns, argues that persistent
performance is explained almost entirely by persistent differences in mutual fund expenses and transaction costs.
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consider in Hendricks et al. (1993) is approximately 0.19. If we assume that the relative perfor-
mance of mutual funds is independent across funds, then the power of the stratified permutation
test of the joint null hypothesis H0 against this alternative is 0.99. This remains the case if the pro-
portion of funds that deviate from randomness is reduced to 0.5. While it is beyond the scope of our
analysis to provide a more detailed justification of alternatives, this exercise highlights the value of
developing methods for joint testing in settings with possible dependence across individuals.

B Dynamic Potential Outcome Notation

In this section, we study the relationship between testing the randomness of a stationary Bernoulli
sequence and testing whether there is a causal effect of an outcome in previous periods on the
current period’s outcome in a Bernoulli process. In Section B.1, we show that these conditions are
equivalent under an unconfoundedness type condition. In Section B.2, we show that stationary and
α-mixing alternatives are a natural class of alternatives to consider for this problem. In Section B.3,
we specify the Markov chain alternatives studied in Section 4 of the main text with the dynamic
potential outcomes notation studied in this section. We confine our consideration to the case with
s = 1, and therefore drop the dependence on the individual i.

Define the potential outcome sequence

U (·) =
(
Uj (·) = {Uj (x)}x∈{0,1}m , j ∈ Z+

)
such that Uj (x) is a Bernoulli random variable for every j and x. That is, U (·) is a 2m-vector
valued Bernoulli process. Let the observed outcome sequence be defined recursively as

X =

 ∑
x∈{0,1}m

Uj (x) I {(Xj−1, . . . , Xj−m) = x} , j > m


= (Uj (Xj−1, . . . , Xj−m) , j > m) .

Define the parameters

SDj (x, x′) = E [Uj (x)− Uj (x′)] and

SDj (x) = E [Uj (x)−Xj] .

B.1 Relationship Between Independence and State Dependence

We are interested in the relationship between the conditions

SDj (x, x′) = 0 for all x, x′ ∈ {0, 1}mand j ∈ Z+, (B.1)

SDj (x) = 0 for all x ∈ {0, 1}mand j ∈ Z+, (B.2)
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and the independence and identical distribution of the observed outcome sequence. The assump-
tions that

∀x ∈ {0, 1}m , Uj (x) ⊥ Xj−1, . . . , X1 and (B.3)

∀x ∈ {0, 1}m , x′ ∈ {0, 1} , P (Uj (x) = x′)P (Xj−1:j−m = x) = P (Uj (x) = x′, Xj−1:j−m = x)

(B.4)

are pivotal in the characterization of this relationship.

Remark B.1. The condition (B.3) can be thought of as analogous to the “unconfoundedness”
and “stable unit treatment values” assumptions in the literature on causal inference (Rubin, 1990;
Imbens and Rubin, 2015). In the language of our empirical application, the potential outcomes for
a shot j are independent of the outcomes of the previous m shots (the treatment assignment) and
are additionally independent of the outcomes of all other previous shots (the treatment assignments
for other shots). �

We refer to the first condition (B.1) as “weak no state dependence” and the second condition
(B.2) as “strong no state dependence”. The relative strength of the no state dependence condi-
tions obtains from the following remark and the subsequent example. The relative strength of the
unconfoundedness conditions follows from Remark B.3 and Example B.2.

Remark B.2. Strong no state dependence implies weak no state dependence. Suppose that SDj (x) =

0 for all x ∈ {0, 1}m. Then we have that

E [Uj (x)−Xi] = E [Uj (x′)−Xi]

for all x, x′ ∈ {0, 1}m which implies that E [Uj (x)− Uj (x′)] = 0 for all x, x′ ∈ {0, 1}m and thus
SDj (x, x′) = 0 for all x, x′ ∈ {0, 1}m.

However, the two conditions are equivalent if we assume that (B.4) holds. Suppose that
SDj (x, x′) = 0 for all x, x′ ∈ {0, 1}m and unconfoundedness holds, then we can see that for
z ∈ {0, 1}

P (Xj = z) =
∑

x∈{0,1}m
P (Uj (x) = z,Xj−1:j−m = x)

=
∑

x∈{0,1}m
P (Uj (x) = z)P (Xj−1:j−m = x) (Weak Unconfoundedness)

=
∑

x∈{0,1}m
P (Uj (x′) = z)P (Xj−1:j−m = x) (Weak No State Dependence)

= P (Uj (x′) = z) ,

so SDj (x) = 0 for all x ∈ {0, 1}m. �

Example B.1. In general, weak no state dependence does not imply strong no state dependence.
To see this, suppose that X are independent and identically distributed Bernoulli with probability
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of success p and m = 1. Set Uj (Xj−1) = Xj but set

Uj (1)
d∼ Bernoulli (p+ η1) if Xj−1 = 0

Uj (0)
d∼ Bernoulli (p+ η0) if Xj−1 = 1.

We can impose SDj (x, x′) = 0 for all x, x′ ∈ {0, 1}m by choosing η1 and η0 such that P (Uj (1) = 1) =

P (Uj (0) = 1). Observe that

P (Uj (1) = 1) = pP (Xj−1 = 1) + (p+ 2η1)P (Xj−1 = 0) = p+ η1 (1− p)
P (Uj (0) = 1) = (p+ 2η0)P (Xj−1 = 1) + pP (Xj−1 = 0) = p+ η0p.

So, it must be the case that

η1 (1− p) = η0p

So if p = 1/4, then η0 = 3η1. In that case, if η0 = 1/8, then P (Uj (0) = 1) = 3/8 6= 1/4 =

P (Xj = 1) and SDj (0) 6= 0. �

Remark B.3. It is clear that unconfoundedness (B.3) implies weak unconfoundedness (B.4). Note
that if m = 1, then (B.4) is equivalent to

∀x ∈ {0, 1} , Uj (x) ⊥ Xj−1

as both {Xj−1 = x} and {Xj−1 6= x} are independent of {Uj (x) = x′} for x, x′ ∈ {0, 1}. �

Example B.2. If X is independent and identically distributed and there is strong no state depen-
dence in the sense of (B.2), then the condition (B.4) does not in general imply (B.3). Consider
m = 2 and suppose that X are independent and identically distributed Bernoulli with probability
of success p. Set Uj (Xj−1) = Xj and

Uj (x, x′)
d∼ Bernoulli (p) if Xj−1 = z,Xj−2 = z′

for all x, x′, z, x′ ∈ {0, 1} except

Uj (0, 0)
d∼ Bernoulli (p− η) if Xj−1 = 0, Xj−1 = 1 and

Uj (0, 0)
d∼ Bernoulli (p+ η) if Xj−1 = 1, Xj−1 = 0.

Observe that,
P (Uj (x, x′)) = p

for all x, x′ ∈ {0, 1} and so there is strong no state dependence. In particular,

P (Uj (0, 0) = 1) = p · P (Xj−1 = 1, Xj−2 = 1) + (p− η) · P (Xj−1 = 0, Xj−2 = 1)

17



+ (p+ η) · P (Xj−1 = 1, Xj−2 = 0) + p · P (Xj−1 = 0, Xj−2 = 0)

= p.

However, as
P (Uj (0, 0) = 1|Xj−1 = 0, Xj−2 = 1) 6= p,

unconfoundedness (B.3) does not hold. �

Neither strong nor weak no state dependence is equivalent to independence and identical dis-
tribution of the observed outcome sequence X. In fact, neither condition implies the other. First,
we show that under strong no state dependence, the observed outcome sequence X can be any
sequence. Second, we give an example that shows that if the observed outcome sequence X is
independent and identically distributed, then there can still be state dependence of either form.

Theorem B.1. Strong no state dependence in the sense of (B.2) places no restriction on X. That
is, X can be any arbitrary sequence.

Proof. Let A = (Aj, j ∈ Z+) be any arbitrary sequence. Suppose

U (x) = U (x′) = A

for all x, x′∈ {0, 1}m. In this case,

Xj = Uj (Xj−1) = Aj

for each j and X = A.

Example B.3. Note that if the observed outcomes X are independent and identically distributed,
then it is not necessarily the case that there is no strong state dependence. For example, suppose
that X are independent and identically distributed Bernoulli with probability of success p and
m = 1. Set Uj (Xj−1) = Xj and Uj (1−Xj−1) = 1−Xj . Then

P (Uj (1) = 1) = P (Xj = 1, Xj−1 = 1) + P (Xj = 0, Xj−1 = 0) = p2 + (1− p)2 6= p

unless p = 1/2. So unless p = 1/2, P (Uj (1) = 1) 6= P (Xj = 1). Moreover, in this example, it is
not the case that there is no weak state dependence either. �

In the following theorem, we demonstrate that the equivalence between strong no state de-
pendence and the independence and identical distribution of the observed outcome sequence X is
conditional on weak unconfoundedness (B.4). Moreover, independent and identical distributed X

and no strong state dependence imply weak unconfoundedness.

Theorem B.2. If U (x) is identically distributed for all x, in the sense that, for each x, Uj (x) is
identically distributed for all j, then any two of the conditions
(i) the observed outcomes X are independent and identically distributed,
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(ii) there is strong no state dependence in the sense of (B.2), and
(iii) there is weak unconfoundedness in the sense of (B.4)
imply the third.

Proof. First, we show that (i) and (iii) imply (ii). Let Xj:j′ denote (Xj, . . . , Xj′) for j > j′. We
have that,

P (Uj (x) = x′) = P (Uj (x) = x′, Xj−1:j−m = x) + P (Uj (x) = x′, Xj−1:j−m 6= x)

= P (Xj = x′, Xj−1:j−m = x) + P (Uj (x) = x′, Xj−1:j−m 6= x)

= P (Xj = x′)P (Xj−1:j−m = x) + P (Uj (x) = x′, Xj−1:j−m 6= x) .

(Independence of X)

From (B.4), we have that the events {Uj (x) = x′} and {Xj−1:j−m = x} are independent, which
implies that the events {Uj (x) = 1− x′} and {Xj−1:j−m 6= x} are independent. As x′ is arbitrary,
we have that

P (Uj (x) = x′, Xj−1:j−m 6= x) = P (Uj (x) = x′)P (Xj−1:j−m 6= x)

Thus, we can see that

P (Uj (x) = x′) = P (Xj = x′)P (Xj−1:j−m = x) + P (Uj (x) = x′)P (Xj−1:j−m 6= x)

giving
P (Uj (x) = x′) (1− P (Xj−1:j−m 6= x)) = P (Xj = x′)P (Xj−1:j−m = x) ,

and P (Uj (x) = x′) = P (Xj = x′) for all x′, x.
Next, we show that (ii) and (iii) imply (i). Take j > j′ ∈ Z+. Then we have that, for z, z′ ∈

{0, 1},

P [Xj = z,Xj′ = z′]

=
∑

x∈{0,1}m
P (Uj (x) = z,Xj−1:j−m = x,Xj′ = z′)

=
∑

x∈{0,1}m
P (Uj (x) = z)P (Xj−1:j−m = x,Xj′ = z′) (Weak Unconfoundedness)

=
∑

x∈{0,1}m
P (Xj = z)P (Xj−1:j−m = x,Xj′ = z′) (Strong No State Dependence)

= P (Xj = z)
∑

x∈{0,1}

P (Xj−1:j−m = x,Xj′ = z′)

= P (Xj = z)P (Xj′ = z′)

Thus, X is pairwise independent. Now suppose by induction, that Xj1 , . . . , Xjl−1
are independent

for arbitrary j1, . . . , jl−1. The event {Xjl = z} is independent from the event
{(
Xj1 , . . . , Xjl−1

)
= z′

}
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for z ∈ {0, 1} and z′ ∈ {0, 1}l−1 by the argument in the preceding display replacing Xj with Xjl

and Xj′ with
(
Xj1 , . . . , Xjl−1

)
. Thus X is independent by induction.

If additionally U (x) is identically distributed for all x, then note that

P (Xj = z) = P (Uj (x) = z) (Strong No State Dependence)

= P (Uj′ (x) = z) (Identically Distributed)

= P (Xj′ = z) (Strong No State Dependence)

for all z ∈ {0, 1} and x ∈ {0, 1}m and any j, j′ > m and thus X is independent and identically
distributed.

Finally, we show that (i) and (ii) imply (iii). Observe that

P (Uj (x) = x′)P (Xj−1:j−m = x) = P (Xj = x′)P (Xj−1:j−m = x)

(Strong No State Dependence)

= P (Xj = x′, Xj−1:j−m = x) (Independence of X)

= P (Uj (x) = x′, Xj−1:j−m = x) . (Definition of X)

Corollary B.1. If U (x) is identically distributed for all x, in the sense that, for each x, Uj (x) is
identically distributed for all j, and the unconfoundedness assumption (B.3) holds, then testing for
randomness is equivalent to testing for strong no state dependence.

Proof. The corollary follows from Theorem B.2 and the observation that unconfoundedness im-
plies weak unconfoundedness.

Corollary B.2. Suppose that the potential outcome sequence U is independent and identically
distributed and independent of X1. Then the restriction of strong no state dependence in the sense
of (B.2) implies that X is independent and identically distributed.

Proof. By Theorem B.2, it suffices to show that there is weak unconfoundedness. We show this
for the case m = 1. The argument holds for general m, but the notation is more involved. Observe
that

P (Uj (x) = x′, Xj−1 = x)

=
∑

x∈{0,1}j−1

P (Uj (x) = x′, Uj−1 (x1) = x, . . . , U2 (xj−2) = xj−1, X1 = xj−1)

=
∑

x∈{0,1}j−1

P (Uj (x) = x′)P (Uj−1 (x1) = x, . . . , U2 (xj−2) = xj−1, X1 = xj−1)

(Independence)

= P (Uj (x) = x′)
∑

x∈{0,1}j−1

P (Uj−1 (x1) = x, . . . , U2 (xj−2) = xj−1, X1 = xj−1)

(Strong No State Dependence)
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= P (Uj (x) = x′)P (Uj−1 (x1) = x)

Thus, (B.4) holds.

Remark B.4. Note that, when proving that strong no state dependence (B.2) and weak uncon-
foundedness (B.4) imply that the observed outcomes X are independent and identically distributed,
the conclusion that X is identically distributed follows only from the conditions of strong no state
dependence and U (x) is identically distributed for all x ∈ {0, 1}m. �

Remark B.5. When proving that strong no state dependence (B.2) and weak unconfoundedness
(B.4) imply that the observed outcomes X are independent and identically distributed, we can
weaken the strong no state dependence assumption to a weak no state dependence assumption
without loss. �

Remark B.6. In general, if there is strong no state dependence(B.2) and U (x) is identically dis-
tributed for a given x, then U (x) is identically distributed for all x. This follows from

P (Uj (x′) = z) = P (Xj = z) (Strong No State Dependence)

= P (Uj (x) = z) (Strong No State Dependence)

= P (Uj′ (x) = z) (Identically Distributed)

= P (Xj′ = z) = P (Uj′ (x
′) = z) (Strong No State Dependence)

for all z ∈ {0, 1}, x′ ∈ {0, 1}m and j, j′ > m. �

B.2 Stationarity and Dependence of Observed Outcomes

We show that if the potential outcome sequence is identically distributed and independent of past
observed outcomes, then the observed outcome sequence is a homogeneous Markov chain of order
m. Under conditions implying that the observed outcome sequence is stationary, aperiodic, and
irreducible, the observed outcome sequence is α-mixing.

Theorem B.3. Suppose that U (x) is identically distributed for all x, in the sense that, for each x,
Uj (x) is identically distributed for all j, and unconfoundedness (B.3) holds, then X is a homoge-
neous Markov chain of order m. Moreover, a joint distribution of X1, . . . , Xm can be chosen such
that X is stationary. In this case, if

P (Uj (x′) = x) > 0 for x ∈ {0, 1} and x′ ∈ {0, 1}m (B.5)

then X is α-mixing.

Proof. Fix x ∈ {0, 1} and (x1, . . . , xk) ∈ (0, 1)m. LetBj,k be the event {Xj−1 = x1, . . . , Xj−k = xk}.
We want to show that

P (Xj = x|Bj,k) = P (Xj = x|Bj,m) .
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By Bayes rule, the left-hand side of the preceding display is

P (Uj (x1, . . . , xm) = x|Bj,k) =
P (Bj,k|Uj (x1, . . . , xm) = x)P (Uj (x1, . . . , xm) = x)

P (Bj,k)
.

By unconfoundedness (B.3), P (Bj,k|Uj (x1, . . . , xm) = x) = P (Bj,k), so

P (Xj = x|Bj,k) = P (Uj (x1, . . . , xm) = x) = P (Xj = x|Bj,m) .

This shows that X satisfies the Markov property of order m. The transition properties are time-
invariant as the middle expression in the preceding expression do not depend on j by identical
distribution of U. Thus, the Markov chain is homogeneous.

By representing the mth order Markov chain as an ordinary Markov chain in the usual way by
enlarging the state space to 2m values, there always exists a stationary distribution in which to start
the process. Thus, X1, . . . , Xm can be chosen such that the resulting process is stationary as well.

Now, suppose that X1, . . . , Xm is chosen such that the process is stationary. It is straightfor-
ward to see that X is irreducible, as if Xj−1:j−m = x ∈ {0, 1}m there is a positive probability
that Xj+m−1:j = x′ for all x′ ∈ {0, 1}m by (B.5). In addition, X is clearly aperiodic as the state
(1, 1, . . . , 1) ∈ {0, 1}m can return to itself in one period with positive probability by (B.5). Hence,
X is α-mixing by Theorem 3.1 of Bradley (2005).

Remark B.7. The condition (B.5) is stronger than necessary for X to be α-mixing. In fact, it is
sufficient for X to be aperiodic and irreducible. �

B.3 Markov Chain Streaky Alternatives

Our Markov chain Streaky alternatives, specified in Section 4.1, can be written

Uj (x)
d∼ Bernoulli (px)

where

px =


1/2 + ε x = 1m,

1/2− ε x = 0m,

1/2 otherwise,

where 1m and 0m are vectors of 1’s and 0’s of length m, respectively and Uj (x) are i.i.d for all x
and j. Under this model, we have that

SD (x, x′) =



2ε x = 1m, x
′ = 0m,

−2ε x = 0m, x
′ = 1m,

ε x = 1m, x
′ /∈ {1m,0m}

−ε x = 0m, x
′ /∈ {1m,0m} ,

0 otherwise,

and SD (x) =


ε x = 1m,

−ε x = 0m,

0 otherwise.
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The test statistics D̂n,k (Xi) and P̂n,k (Xi) − p̂i,n can be thought of as natural statistics for testing
the hypotheses

SD (1m,0m) = 0 and

SD (1m) = 0

for k = m, respectively.

C Asymptotic Distributions of P̄k (X) and D̄k (X)

In this section, we study the asymptotic behavior the statistics P̄k (X) and D̄k (X). First, note that
by Theorem 3.1, for s individuals, with the ith individual having success rate pi, under H0,

√
nsD̄k (X)

d→ N

(
0,

1

s

s∑
i=1

σ2
D (pi, k)

)
. (C.1)

Next, consider the case where pi are outcomes of a random variable Si, where the Si are i.i.d.
according to Λ. If s→∞ and σ2

D (Λ, k) defined by

σ2
D (Λ, k) ≡

∫ 1

0

σ2
D (p, k) dΛ (p)

satisfies σ2
D (Λ, k) <∞, then by the law of large numbers

1

s

s∑
i=1

σ2
D (pi, k)→ σ2

D (Λ, k)

with probability one.
Furthermore, if s→∞ and n→∞, we can conclude that under H0,

√
nsD̄k (X)

d→ N
(
0, σ2

D (Λ, k)
)
. (C.2)

First, consider one individual. Theorem 3.1 covers the limiting behavior conditional on Si = pi.
So, under H0,

Pi
{√

nD̂n,k (Xi) ≤ t
}

=

∫ 1

0

Pi
{√

nD̂n,k (Xi) ≤ t|Si = p
}
dΛ (p)→

∫
Φ
(
t/σ2

D (p, k)
)
dΛ (p)

by dominated convergence. This limiting distribution, which is not normal unless Λ is degenerate,
can be represented by a random variable Bi such that Bi|Si = p is N (0, σ2

D (p, k)) and Si
d∼ Λ.
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Now, for s individuals with “random” pi, conditional on S1, . . . , Ss,

√
nsD̄k (X)

d→ N

(
0,

1

s

s∑
i=1

σ2
D (pi, k)

)
.

But unconditionally, we can say for finite s that

√
nsD̄k (X)

d→ 1√
s

s∑
i=1

Bi,

where the Bi are i.i.d. according to the Gaussian mixture as previously specified. Thus, if s→∞,
then

1√
s

s∑
i=1

Bi
d→N

(
0, σ2

D (Λ, k)
)
.

Now, as in the context of Section 3.3, assume that for each i in 1, . . . , s, Xi = {Xij}∞j=1 is a
possibly dependent Bernoulli(pi) sequence, where ân,i denotes the number of ones in the first n
elements of Xi and n−1/2 (ân − npi) converges in distribution to some limiting distribution. Then,
the stratified permutation distributions for

√
nsKn,s based on the test statistics D̄k (X) satisfies

sup
t

∣∣∣∣∣Kn,s (t)− Φ

t/
√√√√1

s

s∑
i=1

σ2
D (pi, k)

∣∣∣∣∣ P→ 0 (C.3)

as n→∞. An analogous result is obtained if the test statistic is chosen as P̄k (X).
Interestingly, with s fixed and pi random, the permutation distribution will not behave like

the limiting distribution (C.2). It will behave as (C.1), so it is actually random in the limit (even
for s = 1) in that it depends on the outcome Si = pi. More formally, the stratified permutation
distributions for

√
nsKn,s based on the test statistics D̄k (X) satisfies (C.3). This is intuitive,

because even for s = 1, the observed outcome sequence will behave like a random sequence from
pi and the permutation distribution can’t possibly know that some other value of pi could have
been drawn. So, technically, the permutation distribution does not behave like its unconditional
distribution, even under H0. But this is not a problem, as

P
{

Permutation test rejects H i
0

}
=

∫
P
{

Permutation test rejects H i
0|Si = p

}
dΛ (p) ,

and the integrand is equal to α for each p, and so the overall level is still α.

D Second Order Approximations

In this section, we give second order approximations to moments of the plug-in statistics studied
in Section 2. First, let Q̂n,k (Xi) denote the proportion of zeros following k consecutive zeros.
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Recalling that, Zijk =
∏j+k

l=j (1−Xil) and Wik =
∑n−k

j=1 Zijk, then Q̂n,k(Xi) is given by

Q̂n,k(Xi) = Wik

/
Wi(k−1). (D.1)

Theorem D.1. Under the assumption that Xi = {Xij}nj=1 is a sequence of independent and iden-
tically distributed Bernoulli(pi) random variables, then
(i) the expectation of P̂k(Xi) has a second order approximation given by

E
[
P̂n,k(Xi)

]
= pi + n−1pi

(
1− p−ki

)
+O

(
n−2
)
. (D.2)

(ii) the expectation of D̂k(Xi) has a second order approximation given by

E
[
D̂n,k(Xi)

]
= n−1

(
1− (1− pi)1−k − p1−k

i

)
+O

(
n−2
)
. (D.3)

(iii) Cov
(
P̂n,k(Xi), Q̂n,k(Xi)

)
has a second order approximation given by

Cov
(
P̂k(Xi), Q̂k(Xi)

)
= O

(
n−2
)
. (D.4)

Proof. We consider the case with s = 1, and therefore drop the dependence on the individual i. For
notational simplicity, let V̄n,k = n−1

∑n−k
j=1 Yjk with Yjk =

∏j+k
l=j Xl and W̄n,k = n−1

∑n−k
j=1 Zjk

with Zjk =
∏j+k

l=j (1−Xl).

Let g(θ1, θ2) = θ1/θ2. The Taylor expansion of E
[
P̂n,k(X)

]
= E

[
g
(
V̄n,k, V̄n,k−1,

)]
about(

pk+1, pk
)

is given by

E
[
P̂n,k(X)

]
= g

(
pk+1, pk

)
+

1

2
Var

(
V̄n,k

) ∂2g

∂V̄ 2
k

(
pk+1, pk

)
+

1

2
Var

(
V̄n,k−1

) ∂2g

∂V̄ 2
n,k−1

(
pk+1, pk

)
+ Cov

(
V̄n,k, V̄n,k−1

) ∂2g

∂V̄n,k∂V̄n,k−1

(
pk+1, pk

)
+O

(
n−2
)
.

= p+ p1−2k Var
(
V̄n,k−1

)
− 1

p2k
Cov

(
V̄n,k, V̄n,k−1

)
+O

(
n−2
)
.

This is given by

E
[
P̂n,k(X)

]
= p+

p1−2k

n

(
pk − (2k − 1) p2k +

2pk+1 − 2p2k

1− p

)
+

− 1

np2k

(
2pk+1 − 2kp2k+1 +

2pk+2 − 2p2k+1

1− p

)
+O

(
n−2
)

= p+ n−1p
(
1− p−k

)
+O

(
n−2
)
.

Similarly, to show (ii), we can see that

E
[
D̂n,k(X)

]
= E

[
P̂n,k(X)

]
−
(

1− E
[
Q̂n,k(X)

])
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= p+ n−1p
(
1− p−k

)
−
(

1− (1− p)− n−1 (1− p)
(

1− (1− p)−k
))

+O
(
n−2
)

= n−1
(

1− (1− p)1−k − p1−k
)

+O
(
n−2
)
.

Finally, we show (iii). Let g(θ1, θ2, θ3, θ4) = θ1θ3/θ2θ4. The Taylor expansion of E
[
P̂n,k(X)Q̂n,k(X)

]
=

E
[
g
(
V̄n,k, V̄n,k−1, W̄n,k, W̄n,1−k

)]
about ρ =

(
pk+1, pk, (1− p)k+1 , (1− p)k

)
is given by

E
[
P̂n,k(X)Q̂n,k(X)

]
= g (ρ)

+
1

2
Var

(
V̄n,k

) ∂2g

∂W̄ 2
n,k

(ρ) +
1

2
Var

(
V̄k−1

) ∂2g

∂W̄ 2
n,k−1

(ρ)

+
1

2
Var

(
W̄n,k

) ∂2g

∂V̄ 2
n,k

(ρ) +
1

2
Var

(
W̄n,k−1

) ∂2g

∂V̄ 2
n,k−1

(ρ)

+ Cov
(
V̄n,k, V̄n,k−1

) ∂2g

∂V̄n,k∂V̄n,k−1
(ρ) + Cov

(
V̄n,k, W̄n,k

) ∂2g

∂V̄n,k∂W̄n,k
(ρ)

+ Cov
(
V̄n,k, W̄n,k−1

) ∂2g

∂V̄n,k∂W̄n,k−1
(ρ) + Cov

(
V̄n,k−1, W̄n,k

) ∂2g

∂V̄n,k−1∂W̄n,k
(ρ)

(ρ) + Cov
(
V̄n,k−1, W̄n,k−1

) ∂2g

∂V̄n,k−1∂W̄n,k−1
(ρ) + Cov

(
W̄n,k, W̄n,k−1

) ∂2g

∂W̄n,k∂W̄n,k−1
(ρ) +O

(
n−2

)
= p (1− p) + p1−2k (1− p) Var

(
V̄n,k−1

)
+ p (1− p)1−2k Var

(
W̄n,k−1

)
− (1− p)

p2k
Cov

(
V̄n,k, V̄n,k−1

)
+

1

pk (1− p)k
Cov

(
V̄n,k, W̄n,k

)
− (1− p)1−k

pk
Cov

(
V̄n,k, W̄n,k−1

)
− p1−k

(1− p)k
Cov

(
V̄n,k−1, W̄n,k

)
+ p1−k (1− p)1−k Cov

(
V̄n,k−1, W̄n,k−1

)
− p

(1− p)2k
Cov

(
W̄n,k, W̄n,k−1

)
+O

(
n−2

)
,

which can be expressed

E
[
P̂n,k(X)Q̂n,k(X)

]
= p (1− p) +

p1−2k (1− p)
n

(
pk − (2k − 1) p2k +

2pk+1 − 2p2k

1− p

)
+
p (1− p)1−2k

n

(
(1− p)k − (2k − 1) (1− p)2k +

2(1− p)k+1 − 2(1− p)2k

p

)
− (1− p)

np2k

(
2pk+1 − 2kp2k+1 +

2pk+2 − 2p2k+1

1− p

)
+

1

npk (1− p)k
(
− (2k + 1) pk+1 (1− p)k+1

)
− (1− p)1−k

npk

(
− (2k) pk+1 (1− p)k

)
− p1−k

n (1− p)k
(
− (2k) pk (1− p)k+1

)
+
p1−k (1− p)1−k

n

(
− (2k − 1) pk (1− p)k

)
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− p

n (1− p)2k

(
2(1− p)k+1 − 2k(1− p)2k+1 +

2(1− p)k+2 − 2(1− p)2k+1

p

)
+O

(
n−2

)
= p (1− p)− n−1 (1− p)1−k p1−k

(
pk + (1− p)k

(
1− 2pk

))
+O

(
n−2

)
.

Therefore, we can see that

Cov
(
P̂n,k(X), Q̂n,k(X)

)
= E

[
P̂n,k(X)Q̂n,k(X)

]
− E

[
P̂n,k(X)

]
E
[
Q̂n,k(X)

]
= p (1− p)− n−1

(
(1− p)1−k p1−k

(
pk + (1− p)k

(
1− 2pk

)))
+O

(
n−2
)

− p (1− p)− n−1
(
p (1− p)

(
2− p−k − (1− p)−k

))
+ n−2

(
p (1− p)

(
1− p−k

) (
1− (1− p)−k

))
= n−2

(
p (1− p)

(
1− p−k

) (
1− (1− p)−k

))
+O

(
n−2
)
.

Remark D.1. Note that the asymptotic variance of D̂n,k (Xi) is equal to the sum of the asymptotic
variances of P̂n,k (Xi) and Q̂n,k (Xi), suggesting that

nCov
(
P̂n,k (Xi) , Q̂n,k (Xi)

)
→ 0. (D.5)

In fact, we show that Cov
(
P̂n,k (Xi) , Q̂n,k (Xi)

)
= O (n−2) . GVT and MS approximate the

variance of D̂n,k (Xi) with estimators that implicitly assume (D.5). MS cite a simulation exercise
supporting their assumption. Our results justify this assumption mathematically. Additionally, the
asymptotic variance of P̂n,k (Xi)−pi is equal to the sum of the asymptotic variance of P̂n,k (Xi)−
p̂n,i and pi (1− pi), which implies P̂n,k (Xi)− p̂n,i and p̂n,i are asymptotically independent. �

Remark D.2. Using similar arguments, it can be shown that the parametric bootstrap bias-corrected
statistics

P̂n,k(Xi)− p̂n,i − βn,kP (p̂n,i) and D̂n,k(Xi)− βn,kD (p̂n,i) ,

have bias of order 1/n2 when considered as estimators of θkP (Pi) and θkD (Pi) under the null hy-
pothesis H i

0, as opposed to a bias of order 1/n for the statistics P̂n,k (Xi)− p̂n,i and D̂n,k (Xi).

Online Appendix Figure 5 displays the second order approximation to the expectations of
P̂n,k(Xi) and D̂n,k(Xi) under H i

0 for k = 1 and 3 and pi ∈ (0.25, 0.5, 0.75). The approxima-
tion is not suitable for small values of pi and n for large k, but does a remarkably good job for
moderate values of pi and n. Note that the second order approximation for E

[
D̂n,k(Xi)

]
when

k = 1 is the same for all pi, and in fact, the Monte Carlo estimates for the finite-sample values of
E
[
D̂n,k(Xi)

]
when k = 1 are too close to discern at the scale that we have plotted them.
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Online Appendix Figure 5: Second Order Approximation
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Notes: The figure displays the the second order approximations to the expectations of P̂n,k(Xi) and D̂n,k(Xi) under
Hi

0 for k = 1, 2 and 3 and p ∈ (0.25, 0.5, 0.75). In all panels, the solid lines give the Monte Carlo approximations and
the dot-dashed lines give the second order approximation.

E Variance Estimation

In this section we consider variance estimation under the null hypothesis. Any consistent estimate
of pi can be plugged into the asymptotic variances of P̂n,k(Xi) − p̂n,i and D̂n,k (Xi) to produce
a set of consistent estimators. This includes P̂n,k (Xi) for all k. Additionally, the variances can
be estimated consistently with the permutation distribution or with the bootstrap. We show that
P̂n,k (Xi)

(
1− P̂n,k (Xi)

)/
Vik, with Vik =

∑n−k
j=1 Yijk for Yijk =

∏j+k
l=j Xil, is also a consistent

estimator for the asymptotic variance of P̂n,k (Xi). MS estimate the variance of D̂n,k (Xi) with(
(Vik − 1) s2

p,i + (Wik − 1) s2
q,i

Vik +Wik − 2

)(
1

Vik
+

1

Wik

)
(E.1)
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where s2
p,i =

(
Vik
Vik−1

)
P̂n,k(Xi)

(
1− P̂n,k(Xi)

)
and s2

q,i =
(

Wik

Wik−1

)
Q̂n,k(Xi)

(
1− Q̂n,k(Xi)

)
,

and Q̂n,k(Xi) = Wik

/
Wi(k−1) with Zijk =

∏j+k
l=j (1−Xil) and Wik =

∑n−k
j=1 Zijk. This estimator

is typically employed when P̂n,k(Xi) and Q̂n,k(Xi) are the sample means of i.i.d. populations
assumed to have equal variances. This is not the case in our setting, where the variances of P̂n,k(Xi)

and Q̂n,k(Xi) are not equal and the covariance of P̂n,k(Xi) and Q̂n,k(Xi) is not equal to 0. We show
that the ratio of (E.1) and the asymptotic variance of D̂n,k (Xi) converges to 1 in probability.

Theorem E.1. Under the assumption that Xi = {Xij}nj=1 is a sequence of independent and iden-
tically distributed Bernoulli(p) random variables, then the ratio

s2
p,i/Vik

n−1P̂n,k (Xi)
1−k
(

1− P̂n,k (Xi)
)

tends to 1 in probability.

Proof. We consider the case with s = 1, and therefore drop the dependence on the individual i.
Since by Theorem 3.1, P̂n,k(X) is a consistent estimator of p, it follows that

P̂n,k (X)1−k
(

1− P̂n,k (X)
)
/n

p1−k (1− p) /n
P→ 1.

So, in order to show
P̂n,k (X)

(
1− P̂n,k (X)

)
/Vk

P̂n,k (X)1−k
(

1− P̂n,k (X)
)
/n

P→ 1

it suffices to show that
P̂n,k (X)

(
1− P̂n,k (X)

)
/Vk

p (1− p) /npk
P→ 1.

This is equivalent to
npk

Vk

P→ 1

and in turn to
Vk
npk

P→ 1.

This follow from
E [Vk]

npk
=

(n− k) pk

npk
→ 1

and

Var

(
Vk
npk

)
=

1

n2p2k
Var (Vk) = O

(
n−1
)
→ 0
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as Var (Wk) is given by

n

(
pk − (2k − 1) p2k +

2pk+1 − 2p2k

1− p

)
.

Theorem E.2. Let Xi = {Xij}nj=1 be a sequence of independent and identically distributed
Bernoulli(pi) random variables. Then, the ratio of(

(Vik − 1) s2
p,i + (Wik − 1) s2

q,i

Vik +Wik − 2

)(
1

Vik
+

1

Wik

)
(E.2)

and the asymptotic variance of D̂n,k(Xi), given by (6), tends to 1 in probability.

Proof. We consider the case with s = 1, and therefore drop the dependence on the individual i.
By the proof of Theorem E.1, the ratio of(

(Vik − 1) s2
p,i + (Wik − 1) s2

q,i

Vik +Wik − 2

)(
1

Vik
+

1

Wik

)
and (

npk+1 (1− p) + n (1− p)k+1 p

npk + n (1− p)k

)(
1

npk
+

1

n (1− p)k

)

=
p (1− p)

(
(1− p)k + pk

)
npk (1− p)k

= n−1 (p (1− p))1−k
(

(1− p)k + pk
)

tends to 1 in probability as n grows to infinity.

F A General Convergence Theorem Under α-Mixing

Define the measure of dependence

α (A,B) = sup {|P (A ∩B)− P (A)P (B) |A ∈ A, B ∈ B} , (F.1)

where A and B are two sub σ-fields of the σ-field F . For Xi = (Xij, j ∈ Z+), a sequence of
random variables, let us define the mixing coefficient

α (Xi, n) = sup
j∈Z

α
(
F j−∞ (Xi) ,F∞j+n (Xi)

)
, (F.2)
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where the σ-field FKJ (Xi) is given by σ (Xij, J ≤ j ≤ K), with σ (. . .) denoting the σ-field
generated by (. . .) . We say Xi is α-mixing if α (Xi, n) → 0 as n → ∞. Additionally, for
G = (Gj, j ∈ Z+), a stationary sequence of random vectors, let

Σ (G) = Var (G1) + 2
∞∑
i=2

Cov (G1, Gi) . (F.3)

By appealing to Theorem 1.7 of Ibragimov (1962), we can give a general form for the asymptotic
distributions of the test statistics under α-mixing processes.

Theorem F.1. Assuming Xi = (Xij, j ∈ Z+) is a stationary, α-mixing, Bernoulli sequence such
that

∑∞
j=1 α (Xi, j) <∞, with α (Xi, j) given by (F.2), then

(i) P̂n,k (Xi)− p̂n,i, given by (2.4), is asymptotically normal with limiting distribution given by

√
n

((
P̂n,k (Xi)− p̂n,i

)
−

(
E [Yijk]

E
[
Yij(k−1)

] − pi)) d→ N
(

0,E [Γij]
>Σ (Γij)E [Γij]

)
, (F.4)

where Γij =
[
Yijk, Yij(k−1), Xj

]> and Σ (Γij) is given by (F.3), and
(ii) D̂n,k (Xi), given by (2.4), is asymptotically normal with limiting distribution given by

√
n

(
D̂n,k (Xi)−

(
E [Yijk]

E
[
Yij(k−1)

] −(1− E [Zijk]

E
[
Zij(k−1)

]))) d→ N
(

0,E [Λij]
>Σ (Λij)E [Λij]

)
,

(F.5)
where Λij =

[
Yijk, Yij(k−1), Zijk, Zij(k−1)

]> and Σ (Λij) is given by (F.3).

Proof. We consider the case with s = 1, and therefore drop the dependence on the individual i. As
before, let Yk =

(
Yjk =

∏j+k
m=j Xm, j ∈ Z+

)
and Zk =

(
Zjk =

∏j+k
m=j (1−Xm) , j ∈ Z+

)
. The

Yk and Zk processes are also α-mixing since they are k+ 1-dependent. For example, α (Yj, n) ≤
α (Xj, n− k) if n− k > 0, and similarly for Zk. This also implies that the mixing coefficients for
Yk and Zk are summable, and similarly for Γj and Λj.

Next, we evaluate the asymptotic normal limiting distribution of P̂n,k (X) − p̂n. Recall that
Γj = [Yjk, Yjk−1, Xj]

>. By Theorem 1.7 of Ibragimov (1962) and the Cramér-Wold device, as Yk

is strictly stationary with finite absolute moments and summable mixing coefficients,

n−1/2

n∑
j=1

[Γj − E [Γj]]
d→ N (0,Σ (Γj))

and each component of Σ (Γj) is non-zero and finite. Therefore, by the Delta Method,

n1/2

(
P̂n,k (X)− p̂n −

E [Yjk]

E
[
Yj(k−1)

] − p) d→ N
(

0,E [Γj]
>Σ (Γj)E [Γj]

)
.
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Likewise, we evaluate the asymptotic normal limiting distribution of D̂n,k (X). Recall that Λj =[
Yjk, Yj(k−1), Zjk, Zj(k−1)

]>. Again, by Theorem 1.7 of Ibragimov (1962) and the Cramér-Wold
device, as Zk is strictly stationary with finite absolute moments and summable mixing coefficients,

n−1/2

n∑
j=1

[Λj − E [Λj]]
d→ N (0,Σ (Λj)) ,

where each component of Σ (Λj) is non-zero and finite. Therefore, by the Delta Method,

n1/2

(
D̂n,k (X)− E [Yjk]

E
[
Yj(k−1)

] −(1− E [Zjk]

E
[
Zj(k−1)

])) d→ N
(

0,E [Λj]
>Σ (Λj)E [Λj]

)
.

Remark F.1. Note that E [Yijk]
/
E
[
Yij(k−1)

]
is equal to the probability of a success following k

consecutive successes, given by θkP (Pi). Likewise, the asymptotic mean of D̂n,k (X) is equal to the
difference in the probability of successes following k consecutive successes and failures, given by
θkD (Pi). The parameters θkP (Pi) and θkD (Pi) are functionals of the underlying stationary process
Pi and the value of k.

Theorem F.1 implies that

√
n
((
P̂n,k (Xi)− p̂n,i

)
− θkP (Pi)

)
d→ N

(
0, τ 2

P (Pi, k)
)

and
√
n
(
D̂n,k (Xi)− θkD (Pi)

)
d→ N

(
0, τ 2

D (Pi, k)
)

where the limiting variances τ 2
P (Pi, k) and τ 2

D (Pi, k) are also parameters or functionals of the
underlying process Pi and k. In particular, τ 2

D (Pi, k) = E [Λij]
>Σ (Λij)E [Λij], as in part (iii)

of Theorem F.1. If τ̂ 2
P (k) and τ̂ 2

D (k) are consistent estimators of τ 2
P (Pi, k) and τ 2

D (Pi, k), then
P̂n,k (Xi)±τ̂P (k)

z1−α/2√
n

and D̂n,k (Xi)±τ̂D (k)
z1−α/2√

n
are asymptotically valid confidence intervals

for θkP (Pi) and θkD (P) respectively. Of course, when H i
0 is true, τ 2

P (Pi, k) = σ2
P (pi, k), where pi

is the marginal probability of success at any time point for the process Pi. �

G Additional Methods for Joint Hypothesis Testing

In this section, we outline three additional choices for joint test statistics that combine p-values
of individual permutation tests across individuals. We then outline two methods for combining
p-values of different joint tests to compute a single composite p-value. We estimate the power of
these methods with a simulation and present the results of their application to the GVT controlled
shooting experiment.
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G.1 Combining Results for Several Individuals with One Statistic

First, let Q̂n,k (Xi) denote the proportion of zeros following k consecutive zeros. Recalling that,
Zijk =

∏j+k
l=j (1−Xil) and Wik =

∑n−k
j=1 Zijk, then Q̂n,k(Xi) is given by

Q̂n,k(Xi) = Wik

/
Wi(k−1).

In this section, we specify three additional procedures for testing the joint hypothesis H0 using a
single test statistic Ĝn,k (Xi), given a choice of G ∈ {D,P,Q} and a value of k.

Minimum p-value: Let ρG (k, i) denote the p-value for individual i for a test of the hypothesis
H i

0 which rejects for extreme values of Ĝn,k (Xi). The minimum p-value joint hypothesis testing
procedure rejects for small values of ψ̂G,k = min1≤i≤s (ρG (k, i)). The critical values of the test
rejecting for small values of ψ̂G,k can be approximated by the stratified permutation distribution of
ψ̂G,k .

Fisher’s Method: The Fisher joint hypothesis test statistic (Fisher, 1925) is given by

f̂G,k = −2
∑
i

log (ρG (k, i)) .

If ρG (k, i) are p-values for independent tests, then f̂G,k has a chi-squared distribution with 2 ·
s degrees of freedom under H0. However, we need to account for the fact that D̂n,k(Xi) and
P̂n,k(Xi) can be undefined for some sequences. By assigning a p-value of 1 to these sequences, the
critical values of the test rejecting for large values of f̂G,k can be approximated with the stratified
permutation distribution of f̂G,k .

Tukey’s Higher Criticism: The Tukey Higher Criticism test statistic is given by

T̂G,k = max
0<δ<δ0

[Tδ] = max
0<δ<δ0

[√
s̃ (ξδ − δ)√
δ (1− δ)

]
, (G.1)

where
ξδ = s̃−1

∑
i:Ĝn,k(Xi) is defined

I {ρG (k, i) ≤ δ} (G.2)

is the fraction of individuals that are significant at level δ for a given test of H i
0 rejecting for large

values of Ĝn,k (Xi), s̃ is the number of individuals for which Ĝn,k (Xi) is defined, δ0 is a tuning
parameter, and I {·} is the indicator function. Again, critical values of the test rejecting for large
values of T̂G,k can be approximated with the stratified permutation distribution of T̂G,k. See Donoho
and Jin (2004) for further discussion. MS implement binomial tests (Clopper and Pearson, 1934)
that reject for large proportions of significant individuals. A binomial test chooses a specified
threshold of significance δ, and rejects H0 at level α if the number of individuals significant at
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level δ exceeds the 1− α quantile of the distribution of a binomial variable with parameters s and
δ. Tukey’s Higher Criticism is a refinement of this testing procedure that allows for a data-driven
choice of the significance threshold δ.

G.2 Combining the Results of Several Joint Test Statistics

The results of any of the procedures that test the joint hypothesis for a single test statistic can
be combined with the results from tests using different test statistics with Fisher’s method or by
computing the minimum p-value. Specifically, let ρG (k) be the p-value of a test of the joint null
hypothesis using the test statistic Ĝn,k(Xi) for G ∈ {D,P,Q} and k in 1, . . . , K. The Fisher test
statistic is given by

F̂ = −2 log
∑

G∈{D,P,Q}

K∑
k=1

ρG (k) (G.3)

and the minimum p-value test statistic is given by

Ψ̂ = min {ρG (k) |G ∈ {D,P,Q} , 1 ≤ k ≤ K} . (G.4)

The critical values for the tests rejecting for large values of F̂ and small values of Ψ̂ can be approx-
imated with the stratified permutation distribution of F̂ and Ψ̂, respectively.

G.3 Power Simulations

Online Appendix Figure 6 displays contours of the power surface on ε and ζ for the stratified
permutation test rejecting at level 0.05 for large values of D̄1 (X) against the streaky alternative
specified in Section 4.1 for n equal to 100, s equal to 26, and m = 1. For each ε and ζ on a
two dimensional grid, we measure the power of the stratified permutation tests that combine the
p-values of the individual permutation tests that use D̂n,1 (Xi) with simulation by drawing and
implementing the test on 1,000 replicates of s sequences. We group the estimates of power into
five colored regions. The colored regions denote the set of ε and ζ values with estimated power in
the intervals (0, 0.15], (0.15, 0.40], (0.40, 0.65], and (0.65, 0.90].

G.4 Application to GVT

Online Appendix Table 3 presents the p-values for the four tests of H0 outlined in this Appendix
implemented with each test statistic D̂n,k(Xi), P̂n,k(Xi), and Q̂n,k (Xi) for each k between 1 and
4. The majority of tests using individual test statistics reject H0 at the 5% level. The Fisher test
statistic F̂, specified in (G.3), is highly significant for the test using the means of the test statistics,
for Tukey’s Higher Criticism, and for the test using the minimum p-value. F̂ is significant at the
10% level for the test using the Fisher test statistic. The minimum p-value test statistic Ψ̂ is highly
significant for all four tests.

The rejection of H0 at the 5% level is not robust to the exclusion of Shooter 109 from the
sample. Online Appendix Table 3 also displays the p-values for the tests of H0 implemented
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Online Appendix Figure 6: Power Contours for Permutation Tests of Joint Null

Panel A: Fisher
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Panel C: Min p-value
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Notes: Figure displays contours of the power surface on ε and ζ for the stratified permutation tests of the joint null
using the test statistic D̂n,k (X) for k = 1 at level 0.05 against the streaky alternative specified in Section 4.1 for n
equal to 100, s equal to 26, andm = 1. We draw 1,000 replicates of s Bernoulli sequences Xi according to the streaky
alternative specified in Section 4.1 with m = 1 for each ε and ζ. The estimate of the power at each ε and ζ is given by
the proportion of replicates in which the stratified permutation tests using the test statistic D̂n,k (X) for k = 1 rejects
H0 at level 0.05. The estimates of power are grouped into five colored regions. The colored regions correspond to the
set of ε and ζ values with estimated power in five mutually exclusive intervals on (0, 1].
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without the inclusion of Shooter 109 in the sample. Now, at most three of the p-values for tests
of H0 using a single test statistic for each method of testing the joint null are significant at the
5% level. F̂ and Ψ̂ are no longer significant at the 5% level for tests using the means of the test
statistics over shooters and Tukey’s Higher Criticism and are no longer significant at the 10% level
for tests using the minimum p-value and Fisher’s test statistic.

H Asymptotic Power Approximations for General m and k

We generalize the results of Section 4.3 to consider cases withm and k potentially greater than one.
Again, we begin by characterizing the limiting distributions of the plug-in test statistics computed
on Xi for a streaky individual.

Theorem H.1. Let 0 ≤ ε < 1
2
. Assume Xi = {Xij}nj=1 is a two-state stationary Markov chain of

order 2m on {0, 1} such that the probability of transitioning from one to one (zero to zero) is 1
2

+ ε

after m successive ones (zeros) and is 1
2

otherwise, then

√
n
(
P̂n,k (Xi)− p̂n,i − µP (k,m, ε)

)
d→N
(
0, σ2

P (k,m, ε)
)
, and

√
n
(
D̂n,k (Xi)− µD (k,m, ε)

)
d→ N

(
0, σ2

D (k,m, ε)
)

where µP (k,m, ε) and µD (k,m, ε) are given explicitly in the proof and σ2
P (k,m, ε) and σ2

D (k,m, ε)

are functions of k, m, and ε.

Proof. We can rewrite the problem as a 2m state Markov Chain of order 2 on
∏m

j=1 {0, 1}. For
example, suppose m = 2, then a transition from {0, 1} to {1, 0} occurs in the second position of
the sequence {0, 1, 0}}.

Let the j th state be an m-tuple on {0, 1} denoted by
{
Ijm, . . . , I

j
1

}
. The states are enumerated

such that IjmI
j
m−1 . . . I

j
1 is j − 1 expressed in the base 2 numeral system, i.e. {1, 0, 0, 0} is the 9th

state when m = 4. Throughout this proof, we let j denote the state
{
Ijm, . . . , I

j
1

}
.

Let l = 2m−1 and j′ = j (mod l) . If the Markov Chain is in state j, then it can only
transition to states 2j′ − 1 =

{
Ijm−1, . . . , 0

}
and 2j′ =

{
Ijm−1, . . . , 1

}
, as appending a 0 to

the end of a integer expressed base 2 is equivalent to multiplication by 2, removing the first
digit of an integer ≥ 2m−1 and ≤ 2m expressed base 2 is equivalent to taking (mod l), and
{I2r

m , . . . , I
2r
2 } =

{
I2r−1
m , . . . , I2r−1

2

}
for all 0 ≤ r ≤ l.

Let the stationary distribution of the Markov Chain be denoted by π = (π1, . . . , π2m) and the
probability from transitioning from state j to state d be denoted by % (j, d). In general, π must
satisfy the system of 2m + 1 equations

π1% (1, 1) + πl+1% (l + 1, 1) = π1

π1% (1, 2) + πl+1% (l + 1, 2) = π1

...
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k Mean Ḡk Min. p-value ψ̂G,k Fisher f̂G,k Tukey HC T̂G,k

w/ 109 w/o 109 w/ 109 w/o 109 w/109 w/o 109 w/109 w/o 109

D̂k (Xi)

1 0.1464 0.3678 0.0030 0.4940 0.0428 0.3654 0.1079 0.2165

2 0.0402 0.1261 0.0010 0.0354 0.0021 0.0648 0.2834 0.4096

3 0.0036 0.0125 0.0204 0.1279 0.0021 0.0213 0.0483 0.0678

4 0.0716 0.1294 0.1404 0.1346 0.0054 0.0165 0.0079 0.0213

P̂k (Xi)

1 0.1548 0.3520 0.0008 0.4868 0.0150 0.2939 0.0096 0.0417

2 0.0323 0.0879 0.0021 0.1273 0.0047 0.0911 0.0001 0.5405

3 0.0418 0.0882 0.0131 0.3555 0.0385 0.2470 0.2445 0.3299

4 0.3035 0.4095 0.2721 0.2642 0.1690 0.3337 0.5154 0.6729

Q̂k (Xi)

1 0.1492 0.3917 0.0035 0.4916 0.0631 0.4340 0.0571 0.2777

2 0.1891 0.3446 0.1356 0.2796 0.1398 0.3679 0.0113 0.2764

3 0.0126 0.0259 0.1539 0.1458 0.0279 0.0459 0.0877 0.1502

4 0.0361 0.0555 0.3360 0.3238 0.0543 0.0566 0.0126 0.0097

F̂ 68.6796 49.6754 96.2418 36.5842 93.0266 51.2112 82.2148 46.7255

p-value 0.0191 0.0746 0.0002 0.1342 0.0849 0.1339 0.0019 0.0672

Ψ̂ 0.0036 0.0125 0.0008 0.0354 0.0021 0.0165 0.0001 0.0097

p-value 0.0271 0.0828 0.0041 0.21097 0.0907 0.1509 0.0016 0.0880

Online Appendix Table 3: Tests of the Joint Null Hypothesis H0

with and without Shooter 109

Notes: Table displays the p-values for four tests of the joint null hypothesis H0 for D̂k(Xi), P̂k(Xi), or Q̂k(Xi)
and each k in 1, . . . , 4 with and without the inclusion of shooter 109. The minimum p-value procedure, Fisher joint
hypothesis testing procedure, and Tukey’s Higher Criticism procedure use the p-values from the one-sided individual
shooter permutation test. We choose δ0 = 0.5 for computing T̂G,k. The p-values for all four procedures are estimated
by permuting each shooter’s observed shooting sequence 100, 000 times, computing the test statistics for each set of
permuted shooting sequences, and computing the proportion of test statistics greater than or equal to the observed test
statistics. We compute Fisher’s statistic F̂ for all four procedures by taking−2 times the log of the sum of the p-values
for each D̂k(Xi), P̂k(Xi), or Q̂k (Xi) and each k in 1, . . . , 4. We compute the minimum p-value statistic Ψ̂ for all
four procedures by taking the minimum of the p-values for each D̂k(Xi), P̂k(Xi), or Q̂k (Xi) and each k in 1, . . . , 4.
The p-values for F̂ and Ψ̂ are computed by estimating the stratified permutation distributions of F̂ and Ψ̂.
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πj% (j, 2j − 1) + πl+j% (l + j, 2j − 1) = π2j−1

πj% (j, 2j) + πl+j% (l + j, 2j) = π2j (H.1)
...

πl% (l, 2m − 1) + π2m% (2m, 2m − 1) = π2m−1

πl% (l, 2m) + π2m% (2m, 2m) = π2m

2m∑
j=1

πj = 1

In the Markov Chain we consider, % (1, 1) = %
(
2k, 2k

)
= 1

2
+ ε, % (1, 2) = %

(
2k, 2k − 1

)
= 1

2
− ε,

% (j, 2j − 1) = % (j, 2j) = % (l + j, 2j − 1) = % (l + j, 2j) = 1
2

for all j in 1, . . . l, and all other
transition probabilities be equal to 0.

We find that, in this model,

πj =

{
1

2+(2m−2)(1−2ε)
for j = 1, 2m

1−2ε
2+(2m−2)(1−2ε)

for 2 ≤ j ≤ 2m−1.
(H.2)

It is straightforward to show that the stationary distribution given by (H.2) satisfies the system of
equations (H.1) and is therefore the stationary distribution of the Markov chain under considera-
tion.

Let Im = {0, 1}m be the set of sequences of zeros and ones of length m. Let Imq ⊂ Im be
the set of sequences of zeros and ones of length m where the first q elements are ones, the q + 1th

element is a 0, and elements q + 2 through m are either zeros or ones. Note that {Im0 , . . . , Imk } is
a partition of Im and that the cardinality of Imq is 2m−q−1 for 0 ≤ q < k and 1 for q = m. Finally,
let Im1+ = Im\Im0 .

We consider the case with s = 1, and therefore drop the dependence on the individual i. We
can see that, for k ≥ m− 1,

E [Yjk] =
∑
I∈Im1+

P (Xj+1 = 1, . . . , Xj+k = 1| (Xj, . . . , Xj−m+1) = I)P ((Xj, . . . , Xj−m+1) = I)

=
m−1∑
q=1

2m−q−1

(
1

2

)m−q (
1

2
+ ε

)k−m+q (
1− 2ε

2 + (2m − 2) (1− 2ε)

)

+

(
1

2
+ ε

)k (
1

2 + (2m − 2) (1− 2ε)

)
=

(
1
2

+ ε
)k−m+1

2 + (2m − 2) (1− 2ε)
.
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Likewise, for 1 ≤ k < m− 1,

E [Yjk] =
∑
I∈Im1+

P (Xj+1 = 1, . . . , Xj+k = 1| (Xj, . . . , Xj−m+1) = I)P ((Xj, . . . , Xj−m+1) = I)

=
m−k∑
q=1

2m−q−1

(
1

2

)k (
1− 2ε

2 + (2m − 2) (1− 2ε)

)

+
m−1∑

q=m−k+1

2m−q−1

(
1

2

)m−q (
1

2
+ ε

)k−m+q (
1− 2ε

2 + (2m − 2) (1− 2ε)

)

+

(
1

2
+ ε

)k (
1

2 + (2m − 2) (1− 2ε)

)
=

2m−k−1 +
(
2− 2m−k

)
ε

2 + (2m − 2) (1− 2ε)
.

Finally, E [Yjk] = 1
2

for k = 0.
Therefore, by Theorem F.1, P̂n,k (X) − p̂n is asymptotically normal with limiting distribution

given by
n1/2

(
P̂n,k (X)− p̂− µP (k,m, ε)

)
d→ N

(
0, σ2

P̃
(k,m, ε)

)
,

where

µP̃ (k,m, ε) =



ε if m ≤ k
ε

2(1−ε) if k = m− 1
ε

2m−k+(2−2m−k+1)ε
if 1 < k < m− 1

2
2+(2m−2)(1−2ε)

if k = 1

and σ2
P̃

(k,m, ε) is a function of k, m, and ε. D̂n,k (X) is asymptotically normal with limiting
distribution given by

n1/2
(
D̂n,k (X)− µD (k,m, ε)

)
d→ N

(
0, σ2

D (k,m, ε)
)
.

where

µD (k,m, ε) =


2ε if m ≤ k
ε

1−ε if k = m− 1
ε

2m−k−1+(1−2m−k)ε
if 1 < k < m− 1

4ε
2+(2m−2)(1−2ε)

if k = 1

and σ2
D (k,m, ε) is a function of k, m, and ε.

Remark H.1. The functions σ2
P (k,m, ε) and σ2

D (k,m, ε) are continuous in ε, so if we take εn =
h√
n

then we expect that σ2
P (k,m, ε) and σ2

D (k,m, ε) would converge to the asymptotic variances

of P̂n,k (Xi) − p̂n,i and D̂n,k (Xi) under H0, respectively. This is verified formally for the case
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of m = 1 in Section 4.3 and can be shown more generally by tracing the proof of Theorem 4.1,
though the details are omitted. Therefore, if εn = h√

n
, then

√
n
(
P̂n,k (Xi)− p̂n,i − µP (k,m, εn)

)
d→ N

(
0, σ2

P (1/2, k)
)
,

√
n
(
D̂n,k (Xi)− µD (k,m, εn)

)
d→ N

(
0, σ2

D (1/2, k)
)
,

where σ2
P (1/2, k) and σ2

D (1/2, k) are the asymptotic variances of P̂n,k (Xi) − p̂n,i and D̂n,k (Xi)

under H0, given by Theorem 3.1. �

Remark H.2. Define the limiting constant

φT (k,m, h) = lim
n→∞

√
nµT (k,m, εn)√
σ2
T (1/2, k)

(H.3)

for T equal to P or D, where εn = h/
√
n. Observe that if Xi = {Xij}nj=1 is a Bernoulli sequence

associated with a streaky individual with εn = h/
√
n, then

P

(√
nD̂n,k (Xi)√
σ2
D (1/2, k)

> z1−α

)
= P

(
√
n

(
D̂n,k (Xi)√
σ2
D (1/2, k)

− µD(k,m, εn)√
σ2
D (1/2, k)

)
> z1−α −

√
nµD(k,m, εn)√
σ2
D (1/2, k)

)
→ 1− Φ (z1−α − φD (k,m, h)) .

and similarly for P̂n,k (Xi) − p̂n,i, where z1−α is the 1 − α quantile of the standard normal distri-
bution. This argument implies the following Corollary. �

Corollary H.1. Consider the permutation test of the null hypothesisH i
0 that the Bernoulli sequence

Xi = {Xij}nj=1 is independent and identically distributed rejecting for large values of the test
statistic Tn. The power of this test against the alternative that Xi is a two-state Markov chain of
order 2m on {0, 1} such that the probability of transitioning from one to one (zero to zero) is 1

2
+ ε

after m successive ones (zeros) and is 1
2

otherwise and ε = h/
√
n converges to

1− Φ (z1−α − φT (k,m, h)) ,

where φT (k,m, h) is given by (H.3) as n → ∞ if the test statistic Tn is equal to P̂n,1 (Xi) − p̂n,i
or D̂n,1 (Xi).

Next, we characterize the limiting distributions of P̄k (X) and D̄k (X) under the Markov chain
streaky alternatives specified in Section 4.3 for general m. We then derive an expression for lim-
iting power of stratified permutation tests of H0 against these alternatives that use P̄k (X) and
D̄k (X) as test statistics.

Corollary H.2. Assume that a population of s individuals are associated with the two-state sta-
tionary Markov chains Xi = {Xij}∞j=1 on {0, 1} for each i in 1, . . . , s, such that each sequence Xi
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has probability ζ of satisfying the condition that the probability of transitioning from one to one
(zero to zero) is 1

2
+ ε after m successive ones (zeros) and 1

2
for all other sequences of m ones and

zeros with ε = h/
√
ns and is otherwise independent and identically distributed Bernoulli(1/2),

then
(i) P̄k, given by (2.6), is asymptotically normal with limiting distribution given by

√
nsP̄k (X)

d→ N
(
σP (1/2, k) · φP (k,m, h) · ζ, σ2

P (1/2, k)
)
,

and
(ii) D̄k, given by (2.6), is asymptotically normal with limiting distribution given by

√
nsD̄k (X)

d→ N
(
σD (1/2, k) · φD (k,m, h) · ζ, σ2

D (1/2, k)
)

as n→∞ and s→∞.
(iii) Furthermore, the power of the stratified permutation test of the joint null hypothesis H0 re-
jecting for large values of the test statistic Kn,s, for Kn,s equal to P̄k (X) or D̄k (X), against the
alternative specified in the conditions of this corollary, converges to

1− Φ (z1−α − φT (k,m, h) · ζ)

for T equal P or D, respectively, as n→∞ and s→∞.

I Asymptotic Equivalence to the Wald-Wolfowitz Runs Test

Given a Bernoulli sequence Xi = {Xij}ni=1, define the number of runs by

WWn (Xi) =
n∑
j=2

I
{
Xij 6= Xi(j−1)

}
,

where I {·} is the indicator function.
The Wald-Wolfowitz Runs Test (Wald and Wolfowitz, 1940b) rejects for small values of the

number of runs WWn (Xi), or equivalently, for large values of

Ŝn,i (Xi) =

(
−WW (Xi)

2n
+ p̂n,i (1− p̂n,i)

p̂n,i (1− p̂n,i)

)
. (I.1)

As shown in Wald and Wolfowitz (1940b), under i.i.d. Bernoulli trials,
√
nŜn,i (Xi)

d→ N (0, 1),
so the runs test may use either z1−α or a critical value determined exactly from the permutation dis-
tribution. Note that the runs test is known to be the uniformly most powerful unbiased test against
the Markov chain streaky alternatives considered in Section 4; see Lehmann and Romano (2005),
Problems 4.29–4.31. The following Theorem shows the runs test is asymptotically equivalent to
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the test based on D̂n,1 (Xi).

Theorem I.1. The Wald-Wolfowitz Runs Test and the test based on D̂n,1 (Xi) are asymptotically
equivalent in the sense that they reach the same conclusion with probability tending to one, both
under the null hypothesis and under contiguous alternatives. In particular, we show the following:
(i) Under independent and identically distributed Bernoulli trials,

√
n
(
D̂n,1 (Xi)− Ŝn,i (Xi)

)
P→ 0. (I.2)

Therefore, if both statistics are applied using z1−α as a critical value, they both lead to the same
decision with probability tending to one.
(ii) Since (I.2) implies the same is true under contiguous alternatives to i.i.d. sampling (for some
pi), the same conclusion holds.
(iii) The same conclusion holds if z1−α is replaced by critical values obtained by the permutation
distribution.
(iv) Both tests have the same local limiting power functions under any sequence of contiguous
alternatives (in the sense that if the local limiting power exists for one test, then it does for the
other test with the same value), and in particular, under the Markov Chain streaky alternatives
considered in Section 4, where the limiting local power function is given in Corollary H.1.

Proof. We consider the case with s = 1, and therefore drop the dependence on the individual i.
As before, let Vn,1 =

∑n−1
j=1 XjXj+1 and Vn,0 =

∑n
j=1Xi. Let WWn,0 denote the number of runs

of zeros and WWn,1 the number of runs of ones, so that WWn = WWn,0 + WWn,1. Since the
first success in a run of ones does not contribute to the sum Vn,1, the number of ones followed
by a one in a particular run of ones is the number of ones in the run minus one. Therefore,
Vn,1 = Vn,0 −WWn,1. So, if WW is even, Vn,1 = Vn,0 −WWn/2. On the other hand, if WWn is
odd, then there are either (WWn − 1) /2 or (WWn + 1) /2 runs of ones. It follows that

|Vn,1 −
(
Vn,0 −

WWn

2

)
| ≤ 1

2

or
Vn,1
n

= p̂n −
WWn

2n
+OP

(
n−1
)

(I.3)

where as before p̂ = Vn,0/n. In order to show (I.2), by K.7, it suffices to show

√
n

[(
Vn,1
n
− p̂2

n

p̂n (1− p̂n)

)
+

WWn

2n
− p̂n (1− p̂n)

p̂n (1− p̂n)

]
P→ 0,

or equivalently

√
n

[
Vn,1
n
− p̂2

n +
WWn

2n
− p̂n (1− p̂n)

]
=
√
n

[
Vn,1
n

+
WWn

2n
− p̂n

]
P→ 0,
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which now follows trivially from (I.3). Thus (i) holds and (ii) trivially follows. Part (iii) follows
from Slutsky’s theorem for randomization distributions; see Chung and Romano (2013), Theorem
5.2. Indeed, from Theorem 3.4 we know the permutation distribution based on

√
nD̂n,1 (X) is

asymptotically N (0, 1) (in probability) and the same must then be true for
√
nŜn,i (X). Part (iv)

then follows because the critical values are also asymptotically (or exactly) z1−α under contiguous
alternatives.

Remark I.1. The permutation test based on the standardized first sample autocorrelation divided
by the sample variance, which is not known to have any optimality properties for binary data, is
equivalent to the permutation test based on

∑n
j=1 XijXi(j+1) by the invariance of the sample mean

and variance under permutations. In turn, the permutation test based on
∑n

j=1XijXi(j+1) is asymp-
totically equivalent to the permutation test based on P̂n,1 (Xi); See Wald and Wolfowitz (1940a).
It also follows from (K.7) that the test based on P̂n,1 (Xi)− p̂n,i and D̂n,1 (Xi) are asymptotically
equivalent. Therefore, the permutation tests based on Ŝn,i (Xi), D̂n,1 (Xi), P̂n,1 (Xi)− p̂n,i, and the
first sample autocorrelation are asymptotically equivalent and Theorem I.1 can be applied to any
of the four tests. Miller and Sanjurjo (2018) note this approximate equivalence. Their results are
not asymptotic and are based on an approximate algebraic equivalence supported by simulation of
correlations between the various test statistics. �

J Permutation Tests of Individual Hypotheses H i
0 in GVT

In this section, we display the results of permutation tests of the individual hypotheses H i
0 using

the statistics P̂n,k(Xi)−p̂n,i and D̂n,k (Xi) implemented for each shooter from the GVT controlled
basketball shooting experiment.

Online Appendix Figures 7 and 8 overlay the estimates of D̂n,k (Xi) and P̂n,k(Xi) − p̂n,i on
to estimates of the permutation distributions for each shooter and streak length k = 1, . . . , 4.
Each panel displays the density of the statistics of interest for each shooter over the permutation
replications in a white-to-black gradient. The 95th quantile of the estimated permutation distri-
butions are denoted by green horizontal line segments. The observed estimates for D̂n,k(Xi) and
P̂n,k(Xi) − p̂n,i are denoted by black horizontal line segments. The observed values of D̂n,k(Xi)

are above the 97.5th quantile of the permutation distribution for 1 shooter for k equal to 1, 3 shoot-
ers for k equal to 2 and 4, and 4 shooters for k equal to 3. Online Appendix Tables 7 and 8 display
the p-values of the permutation tests using D̂n,k (Xi) and P̂n,k(Xi)− p̂n,i for each k in 1, . . . , 4.
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Online Appendix Figure 7: Individual Permutation Distributions and Critical Values: D̂n,k (Xi)

Notes: Figure displays the observed values of D̂n,k (Xi) overlaid onto the estimated permutation distribution
of D̂n,k (Xi) under H i

0 for each k in 1, . . . , 4 and each shooter i with D̂n,k (Xi) defined. The observed
values of D̂n,k (Xi) are denoted by black horizontal line segments. The estimated 95th quantile of the
permutation distribution of D̂n,k (Xi) underH i

0 is displayed by green horizontal line segments. We estimate
the permutation distribution of D̂n,k (Xi) under H i

0 by permuting Xi 100, 000 times, computing D̂n,k (Xi)
for each permutation distribution. The estimates of the permutation distribution are displayed in vertical
white to black gradients, shaded by the proportion of permutations whose computed value of D̂n,k (Xi) lie
in a fine partition of the observed support of D̂n,k (Xi) under H i

0. Within each panel, we sort the shooters
by D̂n,k(Xi), with the smallest value on the left and the largest value on the right.
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Online Appendix Figure 8: Individual Permutation Distributions and Critical Values: P̂n,k(Xi)− p̂n,i

Notes: Figure displays the observed values of P̂n,k(Xi) − p̂n,i overlaid onto the estimated permutation
distribution of P̂n,k(Xi) − p̂n,i under H i

0 for each k in 1, . . . , 4 and each shooter i with P̂n,k(Xi) − p̂n,i
defined. The observed values of P̂n,k(Xi) − p̂n,i are denoted by black horizontal line segments. The es-
timated 95th quantile of the permutation distribution of P̂n,k(Xi) − p̂n,i under H i

0 is displayed by green
horizontal line segments. We estimate the permutation distribution of P̂n,k(Xi) − p̂n,i under H i

0 by per-
muting Xi 100, 000 times, computing P̂n,k(Xi)− p̂n,i for each permutation distribution. The estimates of
the permutation distribution are displayed in vertical white to black gradients, shaded by the proportion of
permutations whose computed value of P̂n,k(Xi) − p̂n,i lie in a fine partition of the observed support of
P̂n,k(Xi) − p̂n,i under H i

0. Within each panel, we sort the shooters by P̂n,k(Xi) − p̂n,i, with the smallest
value on the left and the largest value on the right.
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Shooter k 1 2 3 4

101 0.8344 0.4824 0.2826 0.4393

102 0.4564 0.6254 0.8966 –

103 0.0234 0.5820 0.4895 0.7063

104 0.6944 0.8675 0.5782 0.9637

105 0.8367 0.8649 0.9052 0.9921

106 0.0347 0.0259 0.0061 0.0304

107 0.0531 0.1548 0.0214 0.0752

108 0.5563 0.1700 0.2443 0.0341

109 0.0001 0.0000 0.0008 0.0188

110 0.6755 0.1905 0.3701 0.4101

111 0.3244 0.4094 0.3053 0.3862

112 0.6369 0.5446 0.3575 0.2956

113 0.7322 0.5718 0.2251 0.5630

114 0.5514 0.5216 0.2222 0.4174

201 0.8697 0.8120 0.8690 0.8977

202 0.1131 0.4383 0.4165 0.2789

203 0.0441 0.3112 0.1748 0.0646

204 0.6336 0.4240 0.2888 0.4126

205 0.3457 0.1255 0.4082 0.4652

206 0.9026 0.8165 0.7996 0.8777

207 0.0758 0.0014 0.0367 0.1447

208 0.7059 0.3595 0.2742 0.0546

209 0.6996 0.6436 0.3159 0.5357

210 0.4051 0.0043 0.0055 0.0068

211 0.2857 0.6081 0.5949 0.4421

212 0.6834 0.9557 – –

Online Appendix Table 4: Individual Permutation Test p-values: D̂n,k(Xi)

Notes: Table displays the p-values for the individual level permutation tests rejecting for large values of D̂n,k(Xi).
Each individual’s shooting sequence is permuted 100, 000 times. D̂n,k(Xi) is computed on each permutation. The
p-values are the proportions of permutations with D̂n,k(Xi) greater than or equal to the observed D̂n,k(Xi) among
permutations where the statistic is defined.
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Shooter k 1 2 3 4

101 0.8023 0.7377 0.5071 0.4210

102 0.3954 0.6891 0.6589 –

103 0.0301 0.2987 0.4161 0.3924

104 0.6551 0.8638 0.4610 0.5191

105 0.8083 0.4928 0.5365 0.6016

106 0.0203 0.1901 0.1451 0.3102

107 0.0309 0.1550 0.1606 0.4302

108 0.6110 0.0885 0.2356 0.0461

109 0.0000 0.0001 0.0003 0.0115

110 0.5804 0.4318 0.5372 0.4515

111 0.3629 0.2377 0.2791 0.3137

112 0.5676 0.6121 0.4195 0.4562

113 0.6758 0.7232 0.7916 0.8964

114 0.5514 0.4434 0.3773 0.4191

201 0.8452 0.5693 0.7285 0.7942

202 0.0953 0.3849 0.2608 0.1019

203 0.0360 0.3315 0.1475 0.1441

204 0.5771 0.3480 0.2910 0.3480

205 0.3457 0.0697 0.6178 0.4310

206 0.9026 0.6241 0.7670 0.7319

207 0.0635 0.0048 0.0729 0.1656

208 0.6645 0.2271 0.0160 0.1744

209 0.6996 0.3754 0.2401 0.6096

210 0.3733 0.0055 0.0145 0.0106

211 0.2196 0.5480 0.8024 0.3941

212 0.6447 0.7288 – –

Online Appendix Table 5: Individual Permutation Test p-values: P̂n,k(Xi)− p̂n,i

Notes: Table displays the p-values for the individual level permutation tests rejecting for large values of P̂n,k(Xi)−
p̂n,i . Each individual’s shooting sequence is permuted 100, 000 times. P̂n,k(Xi)− p̂n,i is computed on each permu-
tation. The p-values are the proportions of permutations with P̂n,k(Xi) − p̂n,i greater than or equal to the observed
P̂n,k(Xi)− p̂n,i among permutations where the statistic is defined.
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K Proofs of Theorems Presented in the Main Text

K.1 Proof of Theorem 3.1

Proof of Theorem 3.1 (i) We consider the case with s = 1, and therefore drop the dependence
on the individual i. Recall that Yj,k =

∏j+k
l=j Xl.

First, we characterize the joint limiting distribution of (Yj,k, Yj,k−1, Xj). Note that Yj,k is k-
dependent and strictly stationary. We need to compute the asymptotic expectations, variances, and
covariances for each of the terms. First, the expectations. We can see that E [Yj,k] = pk+1 and that
E [Xj] = p.

Next, the variances. We can see that

Cov (Yj,k, Yj+u,k) = E [Yj,kYj+u,k]− E [Yj,k]E [Yj+u,k]

= pk+1+|u| − p2k+2

for |u| ≤ k. Therefore,

u=k∑
u=−k

Cov (Yj,k, Yj+u,k) =
u=k∑
u=−k

(
pk+1+|u| − p2k+2

)
= pk+1

(
1− pk+1

)
+ 2

k∑
u=1

(
pk+1+u − p2k+2

)
= pk+1 − p2k+2 + 2

k∑
u=1

(
pk+1+u

)
− 2kp2k+2

= pk+1 − (2k + 1) p2k+2 + 2pk+1

(
p
(
1− pk

)
1− p

)

= pk+1 − (2k + 1) p2k+2 +
2pk+2 − 2p2k+2

1− p
. (K.1)

Also, note that Var (Xj) = p (1− p).
Finally, we compute the covariances. Note that

Cov (Yj,k, Yj+u,k−1) = E [Yj,kYj+u,k−1]− E [Yj,k]E [Yj+u,k−1]

= E

[
j+k∏
l=j

Xl

j+u+k−1∏
l=j+u

Xl

]
− p2k+1

=


pk+u − p2k+1 if 1 < u ≤ k

pk+1 − p2k+1 if u ∈ {0, 1}
pk+1+|u| − p2k+1 if − k < u < 0

0 if u ≤ −k or u > k.
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Therefore,

u=k∑
u=−k

Cov (Yj,k, Yj+u,k−1) = 2pk+1 − 2p2k+1 +
k∑

u=2

(
pk+u − p2k+1

)
+

k−1∑
u=1

(
pk+1+u − p2k+1

)
= 2pk+1 − 2kp2k+1 +

k∑
u=2

pk+u +
k−1∑
u=1

pk+1+u

= 2pk+1 − 2kp2k+1 + 2pk+1

k−1∑
u=1

pu

= 2pk+1 − 2kp2k+1 + 2pk+1

(
p
(
1− pk−1

)
1− p

)

= 2pk+1 − 2kp2k+1 +
2pk+2 − 2p2k+1

1− p
. (K.2)

Additionally, observe that

Cov (Yj,k, Xj+u) =

{
pk+1 − pk+2 if 0 ≤ u ≤ k

0 otherwise,

and that therefore, we can evaluate

u=k∑
u=−k

Cov (Yj,k, Xj+u) = (k + 1)
(
pk+1 − pk+2

)
and

u=k∑
u=−k

Cov (Yj,k−1, Xj+u) = k
(
pk − pk+1

)
.

By Theorem 1.7 of Ibragimov (1962) and the Cramér-Wold device, we have that

(n− k)−1/2

(n−k∑
j=1

Yj,k,
n−k∑
j=1

Yj,k−1,
n−k∑
j=1

Xj

)>
−
(
pk+1, pk, p

)> d→ N (0, V ) ,

where

V =

 pk+1 − (2k + 1) p2k+2 + 2pk+2−2p2k+2

1−p 2pk+1 − 2kp2k+1 + 2pk+2−2p2k+1

1−p (k + 1)
(
pk+1 − pk+2

)
2pk+1 − 2kp2k+1 + 2pk+2−2p2k+1

1−p pk − (2k − 1) p2k + 2pk+1−2p2k

1−p k
(
pk − pk+1

)
(k + 1)

(
pk+1 − pk+2

)
k
(
pk − pk+1

)
p (1− p)

 .
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Note that

n1/2

(
n−1

n∑
j=1

Xj

/
(n− k)−1

n∑
j=1

Xj − 1

)
p→ 0,

so we can replace 1
n−k

∑n−k
j=1 Xj with 1

n

∑n
j=1Xj .

Next, we use the delta method to evaluate the asymptotic distribution of P̂n,k (X) − p̂n. Let

g(θ1, θ2, θ3) = θ1/θ2 − θ3. Then ∇g (θ1, θ2, θ3) =
(

1
θ2
, −θ1
θ22
,−1

)>
. Evaluating at

(
pk+1, pk, p

)>,
we find

∇g
(
pk+1, pk, p

)
=

 p−k

−p1−k

−1

 .
Note that  p−k

−p1−k

−1

> V
 p−k

−p1−k

−1



=

 p− (1 + k (1− p)) p1+k

p− (k (1− p) + p) pk

0

>  p−k

−p1−k

−1


= p1−k (1− p)

(
1− pk

)
and that pk+1/pk − p = 0. Hence,

n1/2
(
P̂n,k (X)− p̂n

)
d→ N

(
0, p1−k (1− p)

(
1− pk

))
.

�

Proof of Theorem 3.1 (ii) We consider the case with s = 1, and therefore drop the dependence
on the individual i. Recall that Yj,k =

∏j+k
l=j Xl and that Zj,k =

∏j+k
l=j (1−Xl) .

First, we find the joint limiting distribution of (Yj,k, Yj,k−1, Zj,k, Zj,k−1). We need to compute
the asymptotic expectations, variances, and covariances for each of the terms. First, the expecta-
tions. We can see that E [Yj,k] = pk+1 and E [Zj,k] = (1− p)k+1.

Next, the variances. Recall from the proof of Theorem 3.1 (i) that
∑u=k

u=−k Cov (Yj,k, Yj+u,k) is
given by (K.1) and so therefore

u=k∑
u=−k

Cov (Zj,k, Zj+u,k) = (1− p)k+1 − (2k + 1) (1− p)2k+2 +
2 (1− p)k+2 − 2 (1− p)2k+2

p
.

Next, the covariances. Recall from the proof of Theorem 3.1 (i) that∑u=k
u=−k Cov (Yj,k, Yj+u,k−1) is given by (K.2) and so therefore
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u=k∑
u=−k

Cov (Zj,k, Zj+u,k−1) = 2(1− p)k+1 − 2k(1− p)2k+1 +
2(1− p)k+2 − 2(1− p)2k+1

p
.

Note that

Cov (Yj,k, Zj+u,k) = E [Yj,kZj+u,k]− E [Yj,k]E [Zj+u,k]

= E [Yj,kZj+u,k]− pk+1 (1− p)k+1

= −pk+1 (1− p)k+1 for − k ≤ u ≤ k

Cov (Yj,k, Zj+u,k−1) = E [Yj,kZj+u,k−1]− E [Yj,k]E [Zj+u,k−1]

= E [Yi,kZi+u,k−1]− pk+1 (1− p)k

= −pk+1 (1− p)k for − k − 1 ≤ u ≤ k

Cov (Yj,k−1, Zj+u,k) = E [Yj,k−1Zj+u,k]− E [Yj,k−1]E [Zj+u,k]

= −pk (1− p)k+1 for − k ≤ u ≤ k − 1

As E [Yj,kZj+u,k], E [Yj,kZj+u,k−1], and E [Yj,k−1Zj+u,k] are all equal to zero if there is any overlap
in the Xj’s and (1−Xj)’s composing Yi,r and Zi+u,s for any r and s.We can see that

y=k∑
u=−k

Cov (Yj,k, Zj+u,k) = − (2k + 1) pk+1 (1− p)k+1

y=k∑
u=−k

Cov (Yj,k+1, Zj+u,k−1) = − (2k) pk+1 (1− p)k

y=k+1∑
u=−k+1

Cov (Yj,k, Zj+u,k+1) = − (2k) pk (1− p)k+1 .

Therefore, by Theorem 1.7 of Ibragimov (1962) and the Cramér-Wold device, we have that

(n− k)
−1/2


n−k∑

j=1

Yj,k,

n−k∑
j=1

Yj,k−1,

n−k∑
j=1

Zj,k,

n−k∑
j=1

Zj,k−1

> − (pk+1, pk, (1− p)k+1
, (1− p)k

)> (K.3)

d→ N

(
0,

[
η11 η12
η21 η22

])
.

where

η11 =

 pk+1 − (2k + 1) p2k+2 + 2pk+2−2p2k+2

1−p 2pk+1 − 2kp2k+1 + 2pk+2−2p2k+1

1−p

2pk+1 − 2kp2k+1 + 2pk+2−2p2k+1

1−p pk − (2k − 1) p2k + 2pk+1−2p2k

1−p

 ,
η21 =

[
− (2k + 1) pk+1 (1− p)k+1 − (2k) pk (1− p)k+1

− (2k) pk+1 (1− p)k − (2k − 1) pk (1− p)k

]
,

η12 =

[
− (2k + 1) pk+1 (1− p)k+1 − (2k) pk+1 (1− p)k

− (2k) pk (1− p)k+1 − (2k − 1) pk (1− p)k

]
, and
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η22 =

 (1− p)k+1 − (2k + 1) (1− p)2k+2 +
2(1−p)k+2−2(1−p)2k+2

p
2(1− p)k+1 − 2k(1− p)2k+1 +

2(1−p)k+2−2(1−p)2k+1

p

2(1− p)k+1 − 2k(1− p)2k+1 +
2(1−p)k+2−2(1−p)2k+1

p
(1− p)k − (2k − 1) (1− p)2k +

2(1−p)k+1−2(1−p)2k
p

 .

Next, use the delta method to evaluate the asymptotic distribution of D̂n,k (X).

Let g((θ1, θ2, θ3, θ4)>) = θ1/θ2 + θ3/θ4 − 1. Then ∇g
(
(θ1, θ2, θ3, θ4)>

)
=
(

1
θ2
, −θ1
θ22
, 1
θ4
, −θ3
θ24

)>
.

Evaluating at(
pk+1, pk, (1− p)k+1, (1− p)k

)>
, we find g

((
pk+1, pk, (1− p)k+1, (1− p)

)>)
= 0 and

∇g
((

pk+1, pk, (1− p)k+1, (1− p)
)>)

=


p−k

−p1−k

(1− p)−k

− (1− p)1−k

 .
Note that 

p−k

−p1−k

(1− p)−k

− (1− p)1−k


> [

η11 η12

η21 η22

]
p−k

−p1−k

(1− p)−k

− (1− p)1−k



=


p
(
1− pk

)
p− pk

(1− p)
(

1− (1− p)k
)

(1− p)− (1− p)k


> 

p−k

−p1−k

(1− p)−k

− (1− p)1−k


= (p (1− p))1−k

(
(1− p)k + pk

)
Hence, we have that

n1/2D̂n,k (X)
d→ N

(
0, (p (1− p))1−k

(
(1− p)k + pk

))
.

�

K.2 Proof of Theorem 3.2

Let Gi =
∑n

j=1 Xij be the number of ones. Under H i
0, Gi is sufficient. Hence the test function

ϕ (Gi) defined by
ϕ (Gi) = E [ϕ (Xi) |Gi] (K.4)

does not depend on pi, i.e., it only depends on the data through Gi. But, E [ϕ (Gi)] = E [ϕ (Xi)],
which equals α for all pi by assumption. Moreover, the completeness of Gi implies that ϕ (Gi) =

α; that is,
E [ϕ (Xi) |Gi] = α. (K.5)

But, the conditional distribution of Xi given Gi = g puts mass 1/n! at each of the data sets xπ, so
(K.4) is equivalent to (K.5). �
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K.3 Proof of Theorem 3.3

Proof of Theorem 3.3 (i) We consider the case with s = 1, and therefore drop the dependence
on the individual i. Recall that Vn,k =

∑n−k
j=1 Yj,k and Wn,k =

∑n−k
j=1 Zj,k where Yj,k =

∏j+k
l=j Xj

and Zj,k =
∏j+k

l=j (1−Xj) .
First, we prove the result in the case k = 1. The test statistic under consideration is

√
nD̂n,1 (X),

where

D̂n,1 (X1, . . . , Xn) =
Vn,1
Vn,0
−
(

1− Wn,1

Wn,0

)
=
Vn,1
Vn,0
−
∑n−1

j=1 (1−Xj)Xj+1

n− Vn,0
=
Vn,1
Vn,0
−
∑n

j=2 Xj − Vn,1
n− Vn,0

=
Vn,1
n
− (

∑n
j=2Xj)·Vn,0

n2

Vn,0
n

(
1− Vn,0

n

) . (K.6)

The denominator of (K.6) tends to p (1− p) with probability one. Since |Vn,0−
∑n

j=2 Xj| ≤ 2,
it follows that

√
n

Vn,1
n
−

(∑n
j=2Xj

)
· Vn,0

n2

−√n(Vn,1
n
−
V 2
n,0

n2

)
P→ 0.

Therefore,

√
nD̂n,1 (X) =

√
n
(
Vn,1
n
− V 2

n,0

n2

)
Vn,0
n

(
1− Vn,0

n

) + oP (1) . (K.7)

Let
Π = Πn = (Π (1) , . . . ,Π (n))

denote a (uniform) random permutation of (1, 2, . . . n) independent of Xj for all j.

We need to analyze the joint limiting distribution of
√
n
(
D̂n,1 (X) , D̂n,1 (XΠ)

)
, where

D̂n,1 (XΠ) = D̂n,1

(
XΠ(1), . . . , XΠ(n)

)
.

In particular, to verify Hoeffding’s condition (See Lehmann and Romano 2005, Theorem 15.2.3),
we need to verify that

√
nD̂n,1 (X) and

√
nD̂n,1 (XΠ) are asymptotically independent. We al-

ready know that the marginal distributions of the joint limiting distribution of
√
nD̂n,1 (X) and√

nD̂n,1 (XΠ) are standard normal. Since the denominator Vn,0/n (1− Vn,0/n) is invariant under
permutations and tends to p (1− p) with probability one, it suffices to show

√
nf
(
V̄n,1, V̄n,0

)
and
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√
nf
(
Ṽn,1, V̄n,0

)
are asymptotically independent, where

f (v1, v0) = v1 − v2
0 V̄n,1 = Vn,1/n V̄n,0 = Vn,0/n

and

V̄ Π
n,1 =

1

n

n−1∑
j=1

XΠ(j)XΠ(j+1).

Note that
√
n
(
V̄n,1, V̄n,0

)
and
√
n
(
V̄ Π
n,1, V̄n,0

)
are not asymptotically independent. Next, apply the

Delta Method, noting that averaging over n or n− 1 does not affect our analysis. So,

√
nf
(
V̄n,1, V̄n,0

)
=
√
n
[
V̄n,1 − p2 − 2p

(
V̄n,0 − p

)]
+ op (1) .

The variance of the linear approximation is equal to

n
[
Var

(
V̄n,1

)
+ 2p2 Var

(
V̄n,0

)
− 4pCov

(
V̄n,1, V̄n,0

)]
= p2

(
1− p2

)
+ 4

(
p3 − p4

)
+ 4p3 (1− p)− 8p

(
p2 − p3

)
= p2 (1− p)2 .

Using the linear approximation for both the original statistic and the permuted statistic, we can
apply the Cramér-Wold device. Let

Tj = n−1/2
{
a
[
XjXj+1 − p2 − 2p (Xj − p)

]
+ b

[
XΠ(j)XΠ(j+1) − p2 − 2p

(
XΠ(j) − p

)]}
. (K.8)

Therefore, it suffices to show that, for any a and b,
∑n

j=1 Tj is asymptotically normal with mean 0

and variance (a2 + b2) p2 (1− p)2.
We now determine the limiting behavior of

∑
j Tj by applying a Central Limit Theorem of

Stein (1986) for dependent random variables in a form stated in Rinott (1994). To do this, we will
condition on Πn = πn, so that Theorem 2.2 of Rinott (1994) is applicable. For shorthand, drop the
subscript on πn = π. Let Sj be the set of indices l such that Tj and Tl are dependent. Clearly, Sj
contains both j and j + 1. But, Sj also contains the indices l for which π (l) = j or π (l) = j + 1,
as well as the indices l for which π (l + 1) = j or π (l + 1) = j + 1. So, |Sj| ≤ 6, the important
thing being that the size of |Sj| is uniformly bounded. Moreover, |Tj| ≤ C/

√
n for some constant

C, which only depends on a and b. Next we examine

σ2
n = Var

(
n∑
j=1

Tj

)
=

1

n
Var

(
n∑
j=1

a [XjXj+1 − 2pXj] + b
[
Xπ(j)Xπ(j+1) − 2pXπ(j)

])
.

Again, these terms are for a given permutation π, though we don’t explicitly include the condition-
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ing operation in all variance and covariance expressions. By our previous calculations,

σ2
n =

(
a2 + b2

)
p2 (1− p)2+o (1)+

2ab

n
Cov

n−1∑
j=1

a (XjXj+1 − 2pXj) ,
n−1∑
j=1

b
(
Xπ(j)Xπ(j+1) − 2pXπ(j)

) .
(K.9)

We now show that the covariance term in (K.9) is o (1). It can be expressed as

2ab

n

Cov

n−1∑
j=1

XjXj+1,

n−1∑
l=1

Xπ(l)Xπ(l+1)

+ 4p2 Var

 n∑
j=1

Xj

− 4pCov

n−1∑
j=1

XjXj+1,

n−1∑
l=1

Xl


= 2ab

 1

n
Cov

n−1∑
j=1

XjXj+1,

n−1∑
l=1

Xπ(l)Xπ(l+1)

+ 4p3 (1− p)− 2p3 (1− p) + o (1)

 . (K.10)

Next,

1

n
Cov

(
n−1∑
j=1

XjXj+1,
n−1∑
l=1

Xπ(l)Xπ(l+1)

)
=

1

n

n−1∑
j=1

n−1∑
l=1

Cov
(
XjXj+1, Xπ(l)Xπ(l+1)

)
.

Now, for every j, there exists l such that π (l) = j. For such a l, if π (l + 1) 6= j + 1, then the
(j, l) covariance term in the double sum equals p3 (1− p). Similarly, there exists a l such that
π (l + 1) = j. If π (l) 6= j + 1, then the (j, l) term also equals p3 (1− p). Similarly, there exists
a l such that π (l) = j + 1 and if π (l + 1) 6= j, the term is also p3 (1− p) . Finally, there exists
l + 1 such that π (l + 1) = j + 1 and if π (l) 6= j, the term is also p3 (1− p). So, the number
of pairings of the above form is 4 (n− 1), except possibly if the permutation “preserves” ordering
in the sense π (l) = j and π (l) = j + 1 or π (l + 1) = j and π (l + 1) = j + 1 , in which case
the covariance term would be p2 − p4. If, for a given sequence πn, the number of such pairings
is uniformly bounded above by some constant E, then (K.10) is equal to 4p3 (1− p) + o (1), and
therefore (K.9) is equal to o (1), as desired.

Unfortunately, we cannot simply argue that there is such a finite constant E, because if π is
the identity permutation, the number of terms grows with n, though the identity permutation is an
extremely unlikely outcome for a random permutation. Hence, we argue as follows. Let Nn be the
number of indices (j, l) for which a random permutation Π satisfies (Π (l) ,Π (l + 1)) = (j, j + 1)

and similarly let N ′n be the number of (Π (l + 1) ,Π (l)) = (j + 1, j) . But,

E [Nn] =
n−1∑
j=1

n−1∑
l=1

P {Π (l) = j,Π (l + 1) = j = 1} =
n−1∑
j=1

n−1∑
l=1

1

n
· 1

n− 1
=
n− 1

n
,

and similarly for E′ [Nn]. Therefore, Mn ≡ Nn + N ′n is uniformly bounded in expectation and,
being nonnegative, is therefore tight. Hence, for any subsequence nl, there exists a further subse-
quence for which Mn converges in distribution. By the almost sure representation theorem, there
exists M̃n with the same distribution as Mn which converges almost surely to some M̃ . Based
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on M̃ = m, construct Π̃n according to the conditional distribution of Πn|Mn = m, so that un-
conditionally Π̃n is uniform over permutations. Then, along a subsequence, the above argument
applies as ifM were finite. To sum up, given any subsequence nl there exists a further subsequence
n′ = nlm such that

P

{
n∑
j=1

Zj ≤ t|Π̃n′

}
→ Φ

(
t/
[√

(a2 + b2)p (1− p)
])

with probability one. Hence, unconditionally, by dominated convergence,

P

{
n∑
j=1

Tj ≤ t

}
→ Φ

(
t/
[√

(a2 + b2)p (1− p)
])
. (K.11)

Since, given any subsequence, the same limit obtains for a further subsequence, the limit in (K.11)
holds along the original subsequence. Hence, Hoeffding’s condition holds.

Now for general k. That is, we consider the test statistic

√
nD̂n,k (X) =

√
n

[
V̄n,k
V̄n,k−1

−
(

1− W̄n,k

W̄n,k−1

)]
,

where

V̄n,k =
1

n

n−k∑
j=1

Xj · · ·Xj+k

and

W̄n,k =
1

n

n−k∑
j=1

(1−Xj) · · · (1−Xj+k) .

Using the Taylor approximation

V̄n,k
V̄n,k−1

= p+ p−kV̄n,k − p1−kV̄n,k−1 +OP

(
n−1
)

and similarly for W̄n,k/W̄n,k−1 yields

D̂n,k (X) = p−kV̄n,k − p1−kV̄n,k−1 + (1− p)−k W̄n,k − (1− p)1−k W̄n,k−1 +OP

(
n−1
)
.

As in the proof of k = 1, we need to verify Hoeffding’s condition, i.e that
√
nD̂n,k (X) and√

nD̂n,k (XΠ) are asymptotically independent, where

D̂n,k (XΠ) = D̂n,k

(
XΠ(1), . . . , XΠ(n)

)
is the statistic D̂n,k (X) evaluated at randomly permuted data XΠ(1), . . . , XΠ(n). As before, we first
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fix (or condition on) Π = π. For a given permutation π, define

V̄ π
n,k =

1

n

n−k∑
i=1

Xπ(1), . . . , Xπ(i+k),

and similarly for W̄ π
n,k. Using the same argument as in k = 1, we must show that

nCov
[
p−kV̄n,k − p1−kV̄n,k−1 + (1− p)−k W̄n,k − (1− p)1−k W̄n,k−1

p−kV̄ π
n,k − p1−kV̄ π

n,k−1 + (1− p)−k W̄ π
n,k − (1− p)1−k W̄ π

n,k−1

]
→ 0. (K.12)

Before evaluating (K.12), which is a covariance between a linear combination of four random
variables with another four random variables, we calculate the 16 individual covariances as follows:

nCov(V̄n,k, V̄
π
n,k)→ (k + 1)2p2k+1(1− p) (K.13)

nCov(V̄n,k, V̄
π
n,k−1)→ k(k + 1)p2k(1− p)

nCov(V̄n,k−1, V̄
π
n,k)→ k(k + 1)p2k(1− p)

nCov(V̄n,k−1, V̄
π
n,k−1)→ k2p2k−1(1− p)

nCov(W̄n,k, W̄
π
n,k)→ (k + 1)2(1− p)2k+1p

nCov(W̄n,k, W̄
π
n,k−1)→ k(k + 1)(1− p)2kp

nCov(W̄n,k−1, W̄
π
n,k)→ k(k + 1)(1− p)2kp

nCov(W̄n,k−1, W̄
π
n,k−1)→ k2(1− p)2k−1p

nCov(V̄n,k, W̄
π
n,k)→ −(k + 1)2pk+1(1− p)k+1

nCov(V̄n,k, W̄
π
n,k−1)→ −k(k + 1)pk+1(1− p)k

nCov(V̄n,k−1, W̄
π
n,k)→ −k(k + 1)pk(1− p)k+1

nCov(V̄n,k−1, W̄
π
n,k−1)→ −k2pk(1− p)k

nCov(W̄n,k, V̄
π
n,k)→ −(k + 1)2pk+1(1− p)k+1

nCov(W̄n,k−1, V̄
π
n,k)→ −k(k + 1)pk+1(1− p)k

nCov(W̄n,k, V̄
π
n,k−1)→ −k(k + 1)pk(1− p)k+1

nCov(W̄n,k−1, V̄
π
n,k−1)→ −k2pk(1− p)k

The above 16 calculations are all similar, so we explain just (K.13). Note that

nCov(V̄n,k, V̄
π
n,k) =

1

n

n−k∑
j=1

n−k∑
l=1

Cov
(
X1 · · ·Xj+k, Xπ(l) · · ·Xπ(l+k)

)
. (K.14)

Clearly, the (j, l) term in the double sum is zero if there is no overlap between the sets of indices
{j, . . . , j + k} and {π (l) , . . . , π (l + k)}. Then, for any fixed j, there exists some l such that
π (l) = j, in which case there is overlap. Similarly, for any fixed m and r, each in {1, . . . , k}
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there exists l such that π (l + r) = j +m. Hence, there are (k + 1)2 sets of indices where there is
some overlap between {j, . . . , j + k} and {π (l) , . . . , π (l + k)}. If for each combination ofm and
r, there is only one index that is shared, then the covariance is p2k+1 (1− p). There are (k + 1)2

such terms. The only concern is there may be some further overlap in the sense that more than
one index is shared among the sets. However, we will argue that, while this can occur, it has a
small probability and hence will have negligible effect. To do this, for a given permutation π, let
Nn = Nπ

n be the number of terms with at least two indices in common; that is, let

Nπ
n =

n−k∑
j=1

n−k∑
l=1

I
{
| {j, . . . , j + k}

⋂
{π (l) , . . . , π (l + k)} | ≥ 2

}
.

Since Nπ
n can be bounded by the number of times pairs of indices are in common, we have

Nπ
n ≤

n−k∑
j=1

n−k∑
l=1

k∑
m=0

k∑
m′=0

k∑
r=0

k∑
r′=0

I
{
π (l + r) = j +m

⋂
π (l + r′) = j +m′

}
.

Then, continuing from (K.14),

|nCov(V̄n,k, V̄
π
n,k)−

1

n
(n− k) (k + 1)2 p2k+1 (1− p) | ≤ Nπ

n /n.

Therefore, for any given π (sequence), as long as Nπ
n /n→ 0, the above 16 convergences hold.

Moreover, by the bilinearity of covariance, the above 16 convergences then allow us to calculate
the LHS of (K.12) as the limit of the following 16 terms

np−2k Cov(V̄n,k, V̄
π
n,k)− np1−2k Cov(V̄n,k, V̄

π
n,k−1) + · · ·+ n (1− p)2−2k Cov(W̄ π

n,k−1, V̄
π
n,k−1)

→ p(1− p)[(k + 1)2 − k(k + 1)− (k + 1)2 + k(k + 1)− k(k + 1) + k2 + k(k + 1)− k2

− (k + 1)2 + k(k + 1) + (k + 1)2 − k(k + 1) + k(k + 1)− k2 − k(k + 1) + k2] = 0

yielding the desired conclusion.
Thus, the covariance calculation implying the required asymptotic asymptotic independence

in Hoeffding’s condition holds, as long as Nπ
n /n → 0. (The asymptotic normality holds by the

Central Limit Theorem of Stein 1986, used in the case k = 1 above.) This may not hold for every
π (such as the identity permutation), but we now argue that, viewing NΠ

n as a function of Π (i.e a
random variable), NΠ

n /n→ 0 in probability. To see why,

E
[
NΠ
n /n

]
≤

n−k∑
j=1

n−k∑
l=1

(k + 1)2 k2

n (n+ 1)
≤ (k + 1)2 k2,

which is bounded in n. Thus, by Markov’s inequality,

NΠ
n /n

P→ 0.
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This does not guarantee NΠ
n /n → 0 for almost every realization of the random permutation se-

quence Π (really Πn), but we can use a subsequence argument as follows. Given any subsequence
nl, there exists a further subsequence n′ = nlm such that Nn′ → 0 with probability one along the
subsubsequence. Therefore, along the subsubsequence, we have that Hoeffding’s condition holds
for almost all realizations of Π′n. We may then conclude, for any ε > 0

P
{
|R̂n′ (t)− Φ (t/σk (p)) | > ε|Πn′

}
→ 0,

and so by dominated convergence

R̂T
n′ (t)→ Φ (t/σD (p, k))

with probability one along the subsubsequence. Since we can start with any subsequence before
passing to a subsubsequence, and the limit remains the same, we can conclude that

R̂T
n (t)

P→ Φ (t/σD (p, k)) .

�

Proof of Theorem 3.3 (ii) We consider the case with s = 1, and therefore drop the dependence
on the individual i.The proof is analogous to the proof of Theorem 3.3 (i). We provide the most
important difference, the covariance calculation.

Similar to D̂n,k (X),
Ên,k (X) = P̂n,k (X1, . . . , Xn)− p̂n

admits a Taylor approximation given by

Ên,k (X) = p−kV̄n,k − pk−1V̄n,k−1 − X̄n +OP

(
n−1
)
.

Therefore, we need to show that, for fixed sequences π = πn (such that Nπ
n /n → 0 where Nπ

n is
defined as in the proof of Theorem 3.3 (i)),

nCov
(
p−kV̄n,k − pk−1V̄n,k−1 − X̄n, p

−kV̄ π
n,k − pk−1V̄ π

n,k−1 − X̄π
n

)
→ 0.

But the left side is

2p1−2knCov(V̄n,k, V̄
π
n,k−1)− 2p−knCov(V̄n,k, X̄n) + 2p1−knCov(V̄ π

n,k−1, X̄n) (K.15)

+ nV ar(X̄n) + p−2knCov(V̄n,k, V̄
π
n,k) + p2−2knCov(V̄n,k−1, V̄

π
n,k−1).

Similar to the argument for (K.14), we have

nCov
(
X̄n, V̄n,k

)
→ (k + 1) pk+1 (1− p)
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and
nCov

(
X̄n, V̄n,k−1

)
→ k2p2k−1 (1− p) .

Plugging the limiting covariances into (K.15) yields the limiting variance of

− 2p1−2kk(k + 1)p2k(1− p)− 2p−k(k + 1)pk+1(1− p) + 2p1−2kkpk(1− p)
+ p(1− p) + p−2k(k + 1)2p2k+1(1− p) + p2−2kk2p2k−1(1− p),

which equals 0. �

K.4 Proof of Theorem 3.4

We consider the case with s = 1, and therefore drop the dependence on the individual i. First, We
need to establish an asymptotic equicontinuity property of Ln (h). Let ρ (F,G) denote the Levy
metric between distributions F and G.

Lemma K.1. Given any δ > 0, there exists δ′ > 0 such that if |hn − h| ≤ δ′, then

ρ (Ln (hn) , Ln (h)) ≤ δ

for sufficiently large n.

Proof. We use the following coupling of data sets based on an (hn) number of successes and
also an (h) number of successes. That is, let X = (X1, . . . , Xn) be the data set with the first
an = an (hn) entries equal to 1 and the rest 0. Similarly, let X′ = (X ′1, . . . , X

′
n) be the data set

with the first a′n = an (h) entries equal to 1 and the rest 0. We first claim that, for any δ > 0 and
any permutation π applied to both X and X′, there exists δ′ > 0 independent of π, such that for
sufficiently large n independent of π,

√
n|D̂n,1 (Xπ)− D̂n,1 (X′π) | ≤ δ (K.16)

if |hn − h| ≤ δ′. The lemma would then follow because Ln (h) puts equal mass at the values√
nD̂n,1 (Xπ) as πvaries while Ln (h) puts equal mass at the values

√
nD̂n,1 (X′π). In general, if

F puts mass 1/N at data points a1, . . . , aN and G puts mass 1/N at data points b1, . . . , bN , with
|bi − ai| ≤ δ, then ρ (F,G) ≤ δ.We now verify the statement surrounding (K.16). Since the
difference of two equicontinuous functions is equicontinuous, it suffices to verify the statement
with D̂n,1 (X) replaced by P̂n,1 (X). This entails showing that, given δ > 0, there exists δ′ > 0

such that
√
n|
∑n−1

j=1 Xπ(j)Xπ(j+1)∑n−1
j=1 Xπ(j)

−
∑n−1

j=1 X
′
π(j)X

′
π(j+1)∑n−1

j=1 X
′
π(j)

| (K.17)

is ≤ δ if |hn − h| ≤ δ′. Let T =
∑n−1

j=1 Xπ(j) and T ′ =
∑n−1

j=1 X
′
π(j). Clearly,

an (hn)− 1 ≤ T ≤ S (hn)
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and
an (h)− 1 ≤ T ′ ≤ an (h) .

Now, (K.17) can be expressed as

√
n

T ′T
(T ′ − T )

n−1∑
j=1

Xπ(j)Xπ(j+1) +

√
n

T ′

n−1∑
j=1

[
Xπ(j)Xπ(j+1) −X ′π(j)X

′
π(j+1)

]
. (K.18)

Separate (K.18) into the terms An+Bn, and we show each term is≤ δ/2 for an appropriate choice
of δ′. The sum in An can be bounded by T , so that

|An| ≤
√
n|T − T

′

T ′
|.

Consider the case where hn > h, so then

|An| ≤
√
n

(bn
2

+
√
nhnc − bn2 +

√
nhc − 1

bn
2

+
√
nhc − 1

)
≤
√
n

(
n
2

+
√
nhn −

(
n
2

+
√
nh− 1

)
− 1

n
2

+
√
nh− 2

)
=

hn − h
1
2

+ h√
n
− 2√

n

.

In general,

|An| ≤
|hn − h|

1
2

+ h√
n
− 2√

n

,

which can be made to be≤ δ for all large n for δ′ chosen sufficiently small, as long as h is restricted
to be in a bounded set.

To bound Bn, note that by the coupling construction of X and X′, X and X′ differ in at most
|an (hn) − an (h) | entries. Therefore, for any π, Xπ(i)Xπ(i+1) − X ′π(i)X

′
π(i+1) are 0 except for

at most 2|an (hn) − an (h) | number of them, and the nonzero ones can be bounded above by 1.
Therefore,

|Bn| ≤
2
√
n

T ′
|an (hn)− an (h) |,

which, similar to An, can be bounded above by

|Bn| ≤
2|hn − h|+ 2√

n

1
2

+ h√
n

.

Therefore, for large enough n, chosen independently of π, the bound can be made ≤ δ/2 if |hn −
h| ≤ δ′ for sufficiently small δ′.

In summary, for some sufficiently chosen positive δ′ and large enough n, (K.16) holds for all
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π, and the lemma follows.

Next, we can characterize the behavior of the permutation distributions for the statistic test√
nD̂n,1 (Xi) under nonrandom sequences hn → h. Note that, if hn is nonrandom, so is Ln (hn)

and the limit result does not require any probabilistic qualification, such as convergence in proba-
bility or almost surely.

Lemma K.2. Assume hn → h. Let Ln (hn) be the permutation distribution for Tn = D̂n,1 (Xi)

based on bn
2

+ h
√
nc ones (and the remaining zeros). Equivalently, if an is the number of ones at

time n, then assume n−1/2
(
ân − n

2

)
→ h. Then,

Ln (hn)
d→ N (0, 1)

as n→∞.

Proof. Assume the opposite. Then, there exists ε > 0 such that

ρ (Ln (h) , N (0, 1)) > ε

for infinitely many n. Assume this holds for all large n, or apply the argument below to a subse-
quence. Let δ = ε/2. Then, there exists δ′ > 0 such that for large n, ρ (Ln (h) , Ln (hn)) ≤ δ if
|hn − h| ≤ δ′. Let En be the set of an (hn) with |hn − h| ≤ δ′.

Consider i.i.d. sampling with p = 1
2

and let ân be the number of successes. Then, with an
abuse of notation,

Pp= 1
2
{ân ∈ En} = Pp= 1

2

{
n−1/2|an −

n

2
| ≤ δ′

}
→ c > 0. (K.19)

Let ĥn = n1/2
(
ân − n

2

)
. When En occurs, we have for sufficiently large n,

ρ
(
Ln

(
ĥn

)
, Ln (h)

)
≤ δ = ε/2,

which by the triangle inequality implies

ρ
(
Ln

(
ĥn

)
, N (0, 1)

)
≥ ε/2

for sufficiently large n. Note Ln
(
ĥn

)
is indeed the (random) permutation distribution based on

i.i.d. Bernoulli trials with success probability 1/2. But, because convergence in the Levy metric is
weaker than convergence of distributions in the supremum metric,

Pp= 1
2

{
ρ
(
Ln

(
ĥn

)
, N (0, 1)

)
≥ ε/2

}
→ 0,

which is a contradiction because the probability of En does not tend to 0, by (K.19).
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We now turn to the proof of the main result. It suffices to show, given any subsequence n′ there
exists a further subsequence n′′ such that supt |R̂T

n′′ (t) − Φ (t) | → 0 with probability one. Now
appeal to the Almost Sure Representation Theorem, and construct ãn with the same distribution
as ân such that n−1/2 (ãn − np) converges to some G almost surely. But, for every sequence for
which n−1/2 (ãn − np) converges, we have supt |R̂T

n′′ (t) − Φ (t) | → 0, by Lemma K.2. Since
convergence occurs with probability one, the result holds. �

K.5 Proof of Theorem 4.1

We consider the case with s = 1, and therefore drop the dependence on the individual i.
Note that the n-step transition matrix admits a closed form, given by

Pn =

[
1
2

+ 1
2

(2ε)n 1
2
− 1

2
(2ε)n

1
2
− 1

2
(2ε)n 1

2
+ 1

2
(2ε)n

]
,

and that the stationarity of {Xj}nj=1 implies that X1 is 0 or 1 with probabilities 1/2.
We apply the delta method, and so need to compute the asymptotic variances and covariances

of V̄n,1 and V̄n,0. First, we evaluate

√
nVar

(
X̄n

)
= Var (X1) + 2

n−1∑
j=1

(
1− j

n

)
Cov (X1, Xj+1) .

For all j ≥ 1,

E [X1Xj+1] = E [X1Xj+1|X1 = 1] + E [X1Xi+1|X1 = 0]

=
1

2
P (Xj+1 = 1|X1 = 1)

=
1

2

(
1

2
+

1

2
(2ε)j

)
which implies that

Cov (X1, Xj+1) =
1

2

(
1

2
+

1

2
(2ε)j

)
− 1

4
=

1

4
(2ε)j

and that therefore

√
nVar

(
X̄n

)
=

1

4
+ 2

n−1∑
j=1

(
1− j

n

)
1

4
(2ε)j

→ 1

4
+

1

2

∞∑
j=1

(2ε)j
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=
1

4
+

1

2

[
1

1− 2ε
− 1

]
=

1

4
+

ε

1− 2ε
.

Next, we evaluate

√
nVar

(
n−1∑
j=1

XjXj+1

)
= Var (X1X2) + 2

n−1∑
j=1

(
1− j

n− 1

)
Cov (X1X2, Xj+1Xj+2) .

In order to do so, we would need to evaluate E [X1X2Xj+1Xj+2]. If we set j = 1, then

E [X1X2Xj+1Xj+2] = E [X1X2X3]

=
1

2
E [X1X2X3|X1 = 1]

=
1

2

(
1

2
+ ε

)
2,

and we can evaluate

Cov (X1X2, X2X3) =
1

2

(
1

2
+ ε

)2

− 1

4

(
1

2
+ ε

)2

=
1

2

(
1

2
+ ε

)
.2

If we set j > 1, then

E [X1X2Xj+1Xi+2] =
1

2

(
1

2
+

1

2
(2ε)j−1

)(
1

2
+ ε

)2

and

Cov (X1X2, Xj+1Xj+2) =
1

2

(
1

2
+

1

2
(2ε)j−1

)(
1

2
+ ε

)2

− 1

4

(
1

2
+ ε

)2

=
1

4
(2ε)j−1

(
1

2
+ ε

)2

.

Therefore, we see that

√
nVar

(
n−1∑
j=1

XjXj+1

)
=

1

2

(
1

2
+ ε

)(
1− 1

2

(
1

2
+ ε

))
+

1

2

n−2∑
j=1

(
1− j

n− 1

)
(2ε)j−1

(
1

2
+ ε

)2

64



→
(

1

4
+
ε

2

)(
3

4
− ε

2

)
+

1

2

(
1

2
+ ε

)2 ∞∑
j=0

(2ε)j

=

(
1

4
+
ε

2

)(
3

4
− ε

2

)
+

1

2

(
1

2
+ ε

)2
1

1− 2ε
.

Finally, we evaluate

Cov

(
n∑
j=1

Xi,

n−1∑
l=1

XjXl+1

)
=

n∑
j=1

n−1∑
l=1

Cov (Xj, XlXl+1) . (K.20)

In order to do so, we need to evaluate E [XjXlXl+1]. If we set j = l, then E [XlXl+1] = 1
2

(
1
2

+ ε
)

and Cov (Xl, XlXl+1) = 1
2

(
1
2

+ ε
)
− 1

4

(
1
2
− ε
)

= 1
4

(
1
2

+ ε
)
. Similarly, if j = l + 1, then

E [XlXl+1] = 1
2

(
1
2

+ ε
)

and Cov (Xl+1, XlXl+1) = 1
4

(
1
2

+ ε
)
. If we set j < l, then

E [XjXlXl+1] =
1

2

(
1

2
+

(2ε)l−j

2

)(
1

2
+ ε

)
=

1

4

(
1 + (2ε)l−j

)(1

2
+ ε

)
and

Cov (XjXlXl+1) =
1

4

(
1 + (2ε)l−j

)(1

2
+ ε

)
− 1

4

(
1

2
+ ε

)
=

1

4

(
(2ε)l−j

)(1

2
+ ε

)
.

If we set j > l + 1, then

E [XjXlXl+1] =
1

2

(
1

2
+

(2ε)j−l−1

2

)(
1

2
+ ε

)
=

1

4

(
1 + (2ε)j−l−1

)(1

2
+ ε

)
and

Cov (XjXlXl+1) =
1

4

(
1 + (2ε)j−l−1

)(1

2
+ ε

)
− 1

4

(
1

2
+ ε

)
=

1

4

(
(2ε)j−l−1

)(1

2
+ ε

)
.
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Therefore, we have shown

Cov (XjXlXl+1) =


1
4

(
(2ε)l−j

) (
1
2

+ ε
)

if j ≤ l

1
4

(
(2ε)j−l−1

) (
1
2

+ ε
)

if j > l.

We can evaluate (K.20) by splitting the summation.

n∑
j=1

n−1∑
l=1

Cov (Xj , XlXl+1) =

n∑
j=1

n−1∑
l=j

Cov (Xj , XlXl+1) +

n∑
j=2

j−1∑
l=1

Cov (Xj , XlXl+1) . (K.21)

The first term of (K.21) can be evaluated at the limit as

1

n

n∑
j=1

n−1∑
l=j

Cov (Xj, XlXl+1) =
1

n

n∑
j=1

n−1∑
l=1

1

4
(2ε)l−j

(
1

2
+ ε

)

=
1

n

n∑
j=1

n−j−1∑
m=0

1

4
(2ε)m

(
1

2
+ ε

)

=
1

n

n∑
j=1

1

4

(
1

2
+ ε

) n−j−1∑
m=0

(2ε)m

=
1

n

n∑
j=1

1

4

(
1

2
+ ε

)
1− (2ε)n−j

1− (2ε)

→ 1

4

(
1

2
+ ε

)
1

1− 2ε
.

Likewise, the second term of (K.21) can be evaluated at the limit as

1

n

n∑
j=2

j−1∑
l=1

Cov (Xj, XlXl+1) =
1

n

n∑
j=2

j−1∑
l=1

1

4
(2ε)j−l−1

(
1

2
+ ε

)

=
1

n

n∑
j=2

1

4

(
1

2
+ ε

) j−1∑
m=1

(2ε)m−1

=
1

n

n∑
j=1

1

4

(
1

2
+ ε

)
1− (2ε)j−1

1− (2ε)

→ 1

4

(
1

2
+ ε

)
1

1− 2ε
.
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Hence, we can sum the limits to see that

lim
n→∞

1

n

n∑
j=1

n−1∑
l=1

Cov (Xj, XlXl+1)→ 1

2

(
1

2
+ ε

)
1

1− 2ε
.

As {Xj}nj=1 and {XjXi+1}n−1
l=1 are irreducible and aperiodic, they are both α-mixing by The-

orem 3.1 of Bradley (2005). Therefore, by Theorem B.0.1 of Politis et. al (1999), a central limit
theorem for α−mixing triangular arrays, and the Cramér-Wold device, we have that

√
n

(
X̄n −

1

2
,

∑n−1
j=1 XjXj+1

n− 1
− 1

2

(
1

2
− ε
))

d→ N (0,Σ)

where

Σ =

[
1
4

+ ε
1−2ε

1
2

(
1
2

+ ε
)

1
1−2ε

1
2

(
1
2

+ ε
)

1
1−2ε

(
1
4

+ ε
2

) (
3
4
− ε

2

)
+ 1

2

(
1
2

+ ε
)2 1

1−2ε

]
.

Next, we apply the delta method to evaluate the limiting distribution of D̂n,1 (X). Note that, as
in the proof of Theorem 3.3 (i),

√
n
(
D̂n,1 (X)− 2ε

)
=
√
n

(
V̄n,1 − V̄ 2

n,0

V̄n,0
(
1− V̄n,0

) − 2ε

)
+ op(1).

Let

f(v0, v1) =
v1 − v2

0

v0 (1− v0)

and define µ1 = E
[
V̄n,1

]
= 1

2

(
1
2

+ ε
)

and µ0 = E
[
V̄n,0

]
= 1

2
. We can evaluate

f (µ0, µ1) =
1
2

(
1
2

+ ε
)
− 1

4

1/4
= 2ε,

∂f

∂v0

∣∣∣
µ

=
−2v2

0 (1− v0)− (v1 − v2
0) (1− 2v0)

v2
0 (1− v0)2

∣∣∣
µ

= −4,

and
∂f

∂v1

∣∣∣
µ

=
1

v0 (1− v0)

∣∣∣
µ

= 4.

Therefore, we can see that

√
n
(
D̂n,1 (X)− 2ε

)
=
√
n
(
4
(
V̄n,1 − µ1

)
− 4

(
V̄n,0 − µ0

))
+ op (1) .

Note that

Var
(
4
(
V̄n,1 − µ1

)
− 4

(
V̄n,0 − µ0

))
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= 16

(
1

4
+

ε

1− 2ε
+

(
1

4
+
ε

2

)(
3

4
− ε

2

)
+

1

2

(
1

2
+ ε

)2
1

1− 2ε
− 2

(
1

2

)(
1

2
+ ε

)
1

1− 2ε

)
= 1− 4ε2.

Hence, we have that
n1/2

(
D̂n,1 (X)− 2ε

)
d→ N

(
0, 1− 4ε2

)
.

Finally, we apply the delta method to evaluate the limiting distribution of P̂n,1 − p̂n. Let

h(v0, v1) =
v1

v0

− v0

We can evaluate
h (µ0, µ1) = ε,

∂h

∂v0

∣∣∣
µ

=
−v1

v2
0

− 1
∣∣∣
µ

= −2− 2ε,

and
∂h

∂v1

∣∣∣
µ

=
1

v0

∣∣∣
µ

= 2.

Therefore, we can see that

√
n
(
P̂n,1 (X)− p̂n − ε

)
=
√
n
(
2
(
V̄n,1 − µ1

)
− (2 + 2ε)

(
V̄n,0 − µ0

))
+ op (1) .

Note that

Var
(
2
(
V̄n,1 − µ1

)
− (2 + 2ε)

(
V̄n,0 − µ0

))
= 4

((
1

4
+
ε

2

)(
3

4
− ε

2

)
+

1

2

(
1

2
+ ε

)2
1

1− 2ε

)

+ (2 + 2ε)2

(
1

4
+

ε

1− 2ε

)
− 4 (2 + 2ε)

(
1

2

(
1

2
+ ε

)
1

1− 2ε

)
=

1− 2ε+ 16ε2

4− 8ε
.

Hence, we have that

n1/2
(
P̂n,1 − p̂n − ε

)
d→ N

(
0,

1− 2ε+ 16ε2

4− 8ε

)
.

�
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