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ABSTRACT. Long-term outcomes of experimental evaluations are necessarily observed
after long delays. We develop semiparametric methods for combining the short-term
outcomes of experiments with observational measurements of short-term and long-term
outcomes, in order to estimate long-term treatment effects. We characterize semi-
parametric efficiency bounds for various instances of this problem. These calcula-
tions facilitate the construction of several estimators. We analyze the finite-sample
performance of these estimators with a simulation calibrated to data from an evaluation
of the long-term effects of a poverty alleviation program.
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1. INTRODUCTION

Empirical researchers often aim to estimate the long-term effects of policies or interventions.

Randomized experimentation provides a simple and interpretable approach to this problem (Athey

and Imbens, 2017; Duflo et al., 2007; Fisher, 1925). However, long-term outcomes of experimental

evaluations are necessarily observed after long and potentially costly delays. Consequently, there is

relatively limited experimental evidence on the long-term effects of economic and social policies.1

In this paper, we develop methods for estimating long-term treatment effects by combining short-

term experimental and long-term observational data sets. We consider two closely related models,

proposed by Athey et al. (2020a) and Athey et al. (2020b). In both cases, a researcher is interested in
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the average effect of a binary treatment on a scalar long-term outcome. The researcher observes two

samples of data, an experimental sample and an observational sample. The experimental sample

measures short-term outcomes of a randomized evaluation of the treatment. the treatment The

observational sample measures both short-term and long-term outcomes, but may be subject to

unmeasured confounding. The two settings that we consider are distinguished by whether treatment

is observed in the observational sample. Similar identifying assumptions are required in each case.

We review these assumptions in Section 2.

Methods for combining experimental and observational data to estimate long-term treatment

effects are widely applicable in applied microeconomics and online platform experimentation. The

estimators proposed in Athey et al. (2020b) have been used to estimate the long-term effects of

free tuition on college completion (Dynarski et al., 2021), of an agricultural monitoring technology

on farmer revenue in Paraguay (Dal Bó et al., 2021), and of changes to Twitter’s platform on user

engagement (Twitter Engineering, 2021). As a result, there is considerable interest in advancing a

statistical and methodological foundation for this problem (Gupta et al., 2019).

To that end, this paper offers two contributions. First, we develop semiparametric theory for

estimation of long-term average treatment effects in Section 3. In particular, we derive the semi-

parametric efficiency bound, and the corresponding efficient influence function, for estimating

long-term average treatment effects in each of the models that we consider. We then demonstrate

that the efficient influence function is the unique influence function in each model, indicating that

all regular and asymptotically linear estimators have the same asymptotic variance and achieve the

semiparametric efficiency bound (Chen and Santos, 2018; Newey, 1994). In both cases, we find

that the efficient influence functions possess a “double-robust” structure commonly found in causal

estimation problems (Kang and Schafer, 2007; Scharfstein et al., 1999).

These results are novel. In particular, our calculations correct statements concerning efficient

influence functions and semiparametric efficiency bounds given in a working paper draft of Athey

et al. (2020b).2 Analogous results for the model considered in Athey et al. (2020a) have not appeared

before in the literature.

Second, in Section 4, we establish the consistency and asymptotic normality of a suite of

estimators. These estimators differ according to whether they are based on moment conditions

associated with the efficient influence functions derived in Section 3. Moment conditions defined

by efficient influence functions are often referred to as Neyman orthogonal moment conditions, due
2The results given in Athey et al. (2020b) were obtained through a non-rigorous calculation related to standard heuristics
involving a discretization of the sample space (see e.g., Kennedy (2022) and Ichimura and Newey (2022) for discussion).
Our arguments are rigorous, following the method developed in Section 3.4 of Bickel et al. (1993).
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to their insensitivity to local perturbations of nuisance parameters (see e.g., Chernozhukov et al.,

2018; Foster and Syrgkanis, 2019). The estimators that we formulate can be viewed as instances

of one-step estimators (Bickel, 1982; Le Cam, 1956; Newey, 1994). Roughly, the conditional

expectations that compose an efficient influence function are estimated by augmenting standard

machine learning algorithms with cross-fitting. Estimates of long-term average treatment effects are

then formed by treating estimated efficient influence functions as identifying moment functions.

Estimators obtained from Neyman orthogonal moment conditions admit a very general analysis,

under high-level sufficient conditions, due to Chernozhukov et al. (2018). We adapt these arguments

to our setting.

We compare these estimators to a variety of alternative estimators based on non-orthogonal

moment conditions. In particular, we consider a set of estimators that are analogous to standard

inverse propensity score weighting and outcome regression estimators for average treatment effects

under unconfoundedness (see e.g., Imbens 2004 for a review). These estimators include, but are not

limited to, many of the estimators proposed in Athey et al. (2020a) and Athey et al. (2020b), and

applied by e.g., Dynarski et al. (2021). Here, to obtain theoretical guarantees, we restrict attention

to estimators that plug-in nuisance parameter estimates derived from the method of sieves (Chen

and Liao, 2015; Chen et al., 2014). Relative to those for estimators based on orthogonal moments,

sufficient conditions for estimators based on non-orthogonal moments appear more stringent.

Section 5 assesses the finite sample performance of these semiparametric estimators with a

simulation calibrated to data from a randomized evaluation of the long-term effects of a poverty

alleviation program originally analyzed in Banerjee et al. (2015). We find that estimators based

on orthogonal moments are substantially more accurate than estimators based on non-orthogonal

moments. Section 6 concludes.

Proofs for all results stated in the main text are provided in Appendix A. Appendices B to D

give additional results or details and will be introduced at appropriate points throughout the paper.

Code implementing the estimators developed in this paper is available on GitHub at the link

https://github.com/DavidRitzwoller/longterm.

1.1 Related literature. Settings closely related to our own include Rosenman et al. (2018),

Rosenman et al. (2020), and Kallus and Mao (2020). In Rosenman et al. (2018), treatment

assignment is unconfounded in both samples. In Rosenman et al. (2020), the outcome of interest is

observed in both samples. In Kallus and Mao (2020), treatment is unconfounded in both samples

considered jointly, but not necessarily in either sample considered individually. Yang et al. (2020),

Gui (2020), and Gechter and Meager (2021) give complementary analyses of related models. Hou

https://github.com/DavidRitzwoller/longterm
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et al. (2021) consider a model in which measurements of long-term outcomes and treatments are

missing completely at random. Imbens et al. (2022) propose several alternative identification

strategies for models similar to the model that we consider. In contemporaneous work, Singh

(2021) and Singh (2022) propose estimators and confidence intervals similar to those developed in

Section 4 for the case in which treatment is not observed in the observational data set.

This paper contributes to the literature on missing data models (Hotz et al., 2005; Little and

Rubin, 2019; Ridder and Moffitt, 2007), and more specifically to the literature on semiparametric

efficiency in missing data models (Bia et al., 2020; Chen et al., 2008; Graham, 2011; Muris, 2020).

The models that we consider are related to the literatures on statistical surrogacy (Begg and Leung,

2000; Prentice, 1989) and mediation analysis (Imai et al., 2010; van der Laan and Petersen, 2004).

1.2 Notation. Let λ be a σ-finite measure on the measurable space (Ω,F), and letMλ be the

set of all probability measures on (Ω,F) that are absolutely continuous with respect to λ. For an

arbitrary random variable D defined on (Ω,F , Q) with Q ∈Mλ, we let EQ[D] denote its expected

value. The quantity p(d | E) will denote the density of the random variable D at d conditional on

the event E ∈ Ω and `(d | E) will denote the corresponding log-likelihood. This notation leaves

the law of the random variable D implicit, but will cause no ambiguity. We let ‖ · ‖Q,q denote the

Lq(Q) norm and [n] denote the set {1, . . . , n}.

2. PROBLEM FORMULATION

Consider a researcher who conducts a randomized experiment aimed at assessing the effects

of a policy or intervention. For each individual in the experiment, they measure a q-vector Xi of

pre-treatment covariates, a binary variable Wi denoting assignment to treatment, and a d-vector Si
of short-term post-treatment outcomes. The researcher is interested in the effect of the treatment

on a scalar, long-term, post-treatment outcome Yi that is not measured in their experimental data.

They are able to obtain an auxiliary, observational data set containing measurements, for a separate

population of individuals, of the long-term outcome of interest, in addition to records of the same

pre-treatment covariates and short-term outcomes that were measured in the experimental data set.

This observational data set may or may not record whether each individual was exposed to the

treatment of interest. In this paper, we develop methods for estimating the effect of a treatment on

long-term outcomes that combine experimental and observational data sets with this structure.

To fix ideas, consider Dynarski et al. (2021), who randomize grants of free college tuition to a

population of high achieving, low income high school students. They estimate the average effects

of these free tuition grants on college application and enrollment rates. The long-term effects of
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free tuition grants on college completion rates may be of more direct interest to policy-makers

considering the expansion of college aid programs. However, it will take several years before college

completion is observed for the cohort of students in the experimental sample. Given an observational

data set that records college enrollment and completion for a comparable population of high school

students, the methods developed in this paper may facilitate a more timely quantification of the

effect of free tuition grants on college completion.

We begin this section by defining the data structure and estimands that we consider. We then

review, and restate in a common notation, two sets of closely related sets of identifying assumptions

proposed by Athey et al. (2020a) and Athey et al. (2020b). We refer to these settings as the Latent

Unconfounded Treatment and Statistical Surrogacy Models, respectively.

2.1 Data. Consider the collection of random variables

{Ai}ni=1 = {(Yi(0), Yi(1), Si(0), Si(1),Wi, Gi, Xi)}ni=1

consisting of the potential outcomes and characteristics of a sample of individuals drawn independently

and identically from a distribution P?. Here, Gi is a binary indicator denoting whether the

observation was acquired in the observational sample (Gi = 1) or the experimental sample (Gi = 0).

The variables Yi(·) are long-term potential outcomes, Si(·) are short-term potential outcomes, Wi is

a binary treatment indicator, and Xi are covariates.

The data observable to the researcher are denoted by {Bi}ni=1 and are i.i.d. according to a

distribution denoted by P . The observed outcomes Si and Yi are given by Si = WiSi(1) + (1 −
Wi)Si(0) and Yi = WiYi(1)+(1−Wi)Yi(0), respectively. The short-term outcomes Si are observed

in both the observational and experimental data sets. The long-term outcome Yi is observed only in

the observational data set. Treatment Wi may or may not be observed in the observational sample.

Thus, the observable data Bi are given by (GiYi, Si,Wi, Gi, Xi) if treatment is measured in the

observational data set and by (GiYi, Si, (1 − Gi)Wi, Gi, Xi) if treatment is not measured in the

observational data set.

2.2 Estimands. In the main text, we consider estimation of the long-term average treatment effect

in the observational population, given by

τ1 = EP? [Yi(1)− Yi(0) | Gi = 1] . (2.1)

Athey et al. (2020a) note that there is often reason to believe that features of the observational

population (Gi = 1) are more “externally valid,” in that they of greater interest to policymakers.
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In Appendix B, we give results analogous to those presented in the main text for the long-term

average treatment effect in the experimental population

τ0 = EP? [Yi(1)− Yi(0) | Gi = 0] , (2.2)

which may be of interest in some contexts.3 Athey et al. (2020a) and Athey et al. (2020b) consider

estimation of τ1 and τ0, respectively.

2.3 Identifying Assumptions. We consider two sets of assumptions, proposed in Athey et al.

(2020a) and Athey et al. (2020b). In both models, the long-term average treatment effect τ1 is

identified. The models differ according to whether they are applicable to contexts in which treatment

is or is not measured in the observational data set. Both models assume that treatment assignment is

unconfounded in the experimental data set and that the probabilities of being assigned treatment or

of being measured in the observational data set satisfy a strict overlap condition.

Assumption 2.1 (Experimental Unconfounded Treatment). In the experimental data set, treatment is

independent of short-term and long-term potential outcomes conditional on pre-treatment covariates,

in the sense that

Wi y (Yi(0), Si(0), Yi(1), Si(1)) | Xi, Gi = 0 .

Assumption 2.2 (Strict Overlap). The probability of being assigned to treatment or of being

measured in the observational data set is strictly bounded away from zero and one, in the sense that,

for each w and g in {0, 1}, the conditional probabilities

P (W = w | S,X,G = g) and P (G = g | S,X,W = w)

are bounded between ε and 1− ε, λ-almost surely, for some fixed constant 0 < ε < 1/2.

Unconfounded treatment and strict overlap are often satisfied in the experimental sample by design.

Assessing and accounting for violations of overlap in observational data are important empirical

and methodological issues (Crump et al., 2009). In particular, strong overlap conditions can place

stringent restrictions on the data generating process when there are many covariates or short-term

outcomes (D’Amour et al., 2021). We view systematic consideration of these issues in our context

as an important area for further research.

In addition, as our aim is to use the experimental sample to estimate a feature of the observational

population, we require an assumption limiting the differences between the two populations.
3An alternative estimand is the unconditional long-term average treatment effect τ = EP? [Yi(1)− Yi(0)]. The practical
interpretation of this parameter is somewhat nebulous, as it is unclear why it would be desirable to weight the two
samples in the definition of the parameter according to their sizes.
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Assumption 2.3 (Experimental Conditional External Validity). The distribution of the potential

outcomes is invariant to whether the data belong to the experimental or observational data sets, in

the sense that

Gi y (Yi(1), Yi(0), Si(1), Si(0)) | Xi .

Assumption 2.3 implies that adjustments to the distribution of covariates in the experimental data

set are sufficient to obtain approximations to features of the observational population, thereby ruling

out unobserved systematic differences between the two populations conditional on covariates.

2.3.1 Latent Unconfounded Treatment. If treatment is measured in the observational data set, then

the key identifying assumption is that treatment assignment is unconfounded with respect to the

long-term outcome if conditioned on the short-term potential outcomes. We term this restriction

“Latent Unconfounded Treatment” following Athey et al. (2020a).

Assumption 2.4 (Observational Latent Unconfounded Treatment). In the observational data set,

treatment is independent of the long-term potential outcomes conditional on the short-term potential

outcomes and pre-treatment covariates, in the sense that, for w ∈ {0, 1},

Wi y Yi(w) | Si(w), Xi, Gi = 1 .

Informally, Assumption 2.4 states that all unobserved confounding in the observational sample is

mediated through the short-term outcomes. Assumptions 2.1 to 2.4 are sufficient for identification

of the long-term treatment effect τ1. We summarize these assumptions with the following shorthand.

Definition 2.1. The collection of Assumptions 2.1 to 2.4, in a setting where treatment is measured

in the observational data set, is referred to as the Latent Unconfounded Treatment Model.

Panel A of Figure 1 displays a causal Directed Acyclic Graph (DAG) that is consistent with the

restrictions that the Latent Unconfounded Treatment Model place on the data generating process for

the observational data set.4 The following proposition is stated as Theorem 1 in Athey et al. (2020a).

We state and prove the result for completeness.

Proposition 2.1 (Athey et al. (2020a)). Under the Latent Unconfounded Treatment Model, the

long-term average treatment effect τ1 is point identified.

2.3.2 Statistical Surrogacy. If treatment is not measured in the observational data set, an alternative

“Statistical Surrogacy” assumption, in the spirit of Prentice (1989), is required in the place of
4See Pearl (1995) for further discussion of the applications of manipulation of graphical models to causal inference. We
do not make use of do-calculus methodology to establish identification.
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FIGURE 1. Causal DAGs Consistent with Assumptions on Observational Data

Panel A: Latent Unconfounded Treatment Panel B: Statistical Surrogacy

W
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X
X

W
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Y

X

X

X
Notes: Panels A and B of Figure 1 display causal DAGs that describe the restrictions on the data generating process

for the observational data set (G = 1) implied by the Latent Unconfounded Treatment and Statistical Surrogacy Models,
respectively. Light grey arrows denote the existence of an effect of the tail variable on the head variable. Dark red
arrows with x’s denote that an effect of the the tail variable on the head variable is ruled out. Dashed bidirectional
arrows represent existence of some unobserved common causal variable U , where we have a fork← U →.

Assumption 2.4. Under this restriction, the short-term outcomes can be interpreted as “proxies” or

“surrogates” for the long-term outcome.

Assumption 2.5 (Experimental Statistical Surrogacy). In the experimental data set, treatment is

independent of the long-term observed outcomes conditional on the short-term observed outcomes

and pre-treatment covariates, in the sense that

Wi y Yi | Si, Xi, Gi = 0 .

Informally, Assumption 2.5 additionally rules out a causal link from treatment to the long-term

outcome that is not mediated by the short-term outcomes.

In addition to Assumption 2.3, a supplementary restriction is required to ensure that the experimental

and observational data sets are suitably comparable, conditional on the observed outcomes.

Assumption 2.6 (Long-Term Outcome Comparability). The distribution of the long-term outcome

is invariant to whether the data belong to the experimental or observational data sets conditional on

the short-term outcome and covariates, in the sense that

Gi y Yi | Xi, Si .

Assumption 2.3 is not strictly stronger than Assumption 2.6, as belonging to the experimental or

observational data sets is not necessarily independent of treatment assignment. Statistical Surrogacy,

in addition to Assumptions 2.1 to 2.3 and 2.6, is sufficient for identification of the long-term

treatment effect τ1 in settings where treatment is not measured in the observational data set. Again,

we summarize these conditions with the following shorthand.
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Definition 2.2. The collection of Assumptions 2.1 to 2.3, 2.5, and 2.6, in a setting where treatment

is not measured in the observational data set, is referred to as the Statistical Surrogacy Model.

Panel B of Figure 1 describes the restrictions that the Statistical Surrogacy Model place on the data

generating process for the observational data set. The following proposition restates Theorem 1 of

Athey et al. (2020b). Again, we state and prove the result for completeness.5

Proposition 2.2 (Athey et al. (2020b)). Under the Statistical Surrogacy Model, τ1 is point identified.

3. SEMIPARAMETRIC EFFICIENCY

In this section, we derive efficient influence functions and corresponding semiparametric efficiency

bounds for estimation of long-term average treatment effects τ1 in observational populations. In

Appendix B, we state comparable results for long-term average treatment effects τ0 in experimental

populations.

3.1 Nuisance Functions. The efficient influence functions that we derive are expressed in terms

of a set of unknown, but identified, conditional expectations. We classify each of these objects as

being either a “long-term outcome mean” or a “propensity score.” Each long-term outcome mean is

an expectation of the long-term outcome conditioned on other features of the data. Under the Latent

Unconfounded Treatment Model, where treatment is measured in the observational data set, the

long-term outcome means that appear in the efficient influence function are given by

µw(s, x) = EP [Y | W = w, S = s,X = x,G = 1] and (3.1)

µw(x) = EP [µw(S,X) | W = w,X = x,G = 0] . (3.2)

The function µw(s, x) is the mean of the long term outcomes in the observational sample, conditioned

on treatmentw, the short-term outcomes s, and the covariates x. The function µw(x) is the projection

of µw(s, x) onto the experimental population conditional on w and x, integrated over s.

In turn, under the Statistical Surrogacy model, where treatment is not measured in the observational

data set, the analogous nuisance functions appearing in the efficient influence function are given by

ν(s, x) = EP [Y | S = s,X = x,G = 1] and (3.3)

νw(x) = EP [ν(S,X) | W = w,X = x,G = 0] . (3.4)

5We note that Assumption 2.3 is unnecessary for the identification of τ0 in the Statistical Surrogacy Model.
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The function ν(s, x) is similar to µw(s, x), but does not condition on treatment, as treatment is not

observed in the observational sample under the Statistical Surrogacy Model. The function νw(x)

projects ν(s, x) on the observational sample, conditional on x and w, and integrates over s.

It useful to note that the proofs of Propositions 2.1 and 2.2 operate by establishing, in their

respective models, that the equalities

EP∗ [Y (1) | G = 1] = EP∗ [µ1(X) | G = 1] and EP∗ [Y (1) | G = 1] = EP∗ [ν1(X) | G = 1]

hold and that the objects (3.2) and (3.4) are identified from the observable data. Section 4.2 presents

a set of alternative moment conditions that analogously identify τ1.

Each member of the second class of nuisance functions—propensity scores—expresses either the

probability of treatment or the probability of inclusion in the observational sample conditioned on

other features of the data. In particular, let

ρw(s, x) = P?(W = w | S(w) = s,X = x,G = 1) , (3.5)

%(s, x) = P (W = 1 | S = s,X = x,G = 0) , and (3.6)

%(x) = P (W = 1 | X = x,G = 0) (3.7)

denote the probabilities of treatment conditional on various features of the data. Similarly, let

γ(s, x) = P (G = 1 | S = s,X = x) , γ(x) = P (G = 1 | X = x) , and π = P (G = 1) (3.8)

denote the probabilities of inclusion in the observational sample conditional on various features

of the data.6 Each of these objects is bounded away from zero and one λ-almost surely by strict

overlap (Assumption 2.2). Although the propensity score ρw(s, x) includes the unobserved random

variable S(w) in its conditioning set, we may write ρw(s, x) in terms of observables as

ρw(s, x) =
P (G = 1 | S = s,W = w,X = x)

P (G = 0 | S = s,W = w,X = x)

× P (G = 0 | W = w,X = x)

P (G = 1 | W = w,X = x)
P (W = w | X = x,G = 1) (3.9)

by successive applications of Bayes’ rule, Assumption 2.1, and Assumption 2.3.

3.2 Influence Functions and Efficiency Bounds. We characterize efficient influence functions for

τ1 with the approach developed in Section 3.4 of Bickel et al. (1993). In particular, we characterize

the tangent spaces for the classes of distributions restricted by the maintained assumptions. We

then verify that the conjectured efficient influence functions are pathwise derivatives of τ1 and
6Athey et al. (2020b) term ν(s, x) the surrogate index, %(s, x) the surrogate score, and 1− γ(s, x) the sampling score.
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are elements of their respective tangent spaces. Recall that the Latent Unconfounded Treatment

Model and Statistical Surrogacy Model differ according to the assumptions they impose on the data

generating distribution P? in addition to whether treatment is assumed to have been measured in the

observational sample.

Theorem 3.1. Let b = (y, s, w, g, x) denote a possible value for the observed data.

(1) Under the Latent Unconfounded Treatment Model, given in Definition 2.1, the efficient

influence function for the parameter τ1 is given by

ψ1(b, τ1, η) =
g

π

(
w(y − µ1(s, x))

ρ1(s, x)
− (1− w)(y − µ0(s, x))

ρ0(s, x)
+ (µ1(x)− µ0(x))− τ1

)
(3.10)

+
1− g
π

(
γ(x)

1− γ(x)

(
w(µ1(s, x)− µ1(x))

%(x)
− (1− w)(µ0(s, x)− µ0(x))

1− %(x)

))
,

where the parameter η collects the nuisance functions appearing in (3.10).

(2) Under the Statistical Surrogacy Model, given in Definition 2.2, the efficient influence function

for the parameter τ1 is given by

ξ1(b, τ1, ϕ) =
g

π

(
γ(x)

γ(s, x)

1− γ(s, x)

1− γ(x)

(%(s, x)− %(x))(y − ν(s, x))

%(x)(1− %(x))
+ (ν1(x)− ν0(x))− τ1

)
+

1− g
π

(
γ(x)

1− γ(x)

(
w(ν(s, x)− ν1(x))

%(x)
− (1− w)(ν(s, x)− ν0(x))

1− %(x)

))
, (3.11)

where the parameter ϕ collects nuisance functions appearing in (3.11).7

In our discussion, we will frequently reference the nuisance parameters η and ϕ introduced in

Theorem 3.1. We introduce the following notation to expedite our exposition.

Definition 3.1. Partition the nuisance function η and ϕ defined in Theorem 3.1 into the long-term

outcome means, propensity scores, and π by

η = (ωψ, κψ, π) and ϕ = (ωξ, κξ, π).

In particular, the parameters ωψ and ωξ collect long-term outcome means

ωψ = (µ1(·), µ0(·), µ1(·, ·), µ0(·, ·)) and ωξ = (ν1(·), ν0(·), ν(·, ·)) ,

respectively, and the parameters κψ and κξ collect propensity scores

κψ = (ρ1(·, ·), ρ0(·, ·), %(·), γ(·)) and κξ = (%(·, ·), %(·), γ(·, ·), γ(·)) ,
7We thank Rahul Singh for noting a typo in the statement of ξ1(·) in a previous draft of this paper, which was missing
the factor γ(x)/(1− γ(x)) in the second term.
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respectively.

Remark 3.1. The efficient influence functions ψ1(b, τ1, η) and ξ1(b, τ1, ϕ) derived in Theorem 3.1

are additively separable into two terms associated with the observational and experimental data sets,

respectively. The structure of the terms associated with the observational data set resembles the

structure of the efficient influence function for the average treatment effect under unconfoundedness

(Hahn, 1998); we discuss the relationship between these objects in Section 4.1.1.

Remark 3.2. The efficient influence functions ψ1(b, τ1, η) and ξ1(b, τ1, ϕ) possess a “double-robust”

structure that is prevalent in causal inference and missing data problems (see e.g., Bang and

Robins, 2005; Kang and Schafer, 2007). In particular, the mean-zero property of ψ1(b, τ1, η) is

maintained even if some of the nuisance functions are misspecified. Suppose that we let arbitrary

measurable functions ω̃ replace the long-term outcome means ωψ, then EP [ψ1(B, τ1, (ω̃, κψ, π))] =

0. Similarly, if the arbitrary measurable functions κ̃ replace the propensity scores κψ, then we have

that EP [ψ1(B, τ1, (ωψ, κ̃, π))] = 0. The efficient influence function ξ1(b, τ1, ϕ) is similarly robust

to misspecification of either the long-term outcome means or the propensity scores. This result

echoes an analogous double-robustness property of the efficient influence function of the average

treatment effect under ignorability (Scharfstein et al., 1999), in which the efficient influence function

is mean zero under misspecification of either the conditional means of the outcome variable or the

propensity score. The form of the double-robustness entailed here is slightly more general, as ω and

κ each collect several nuisance function.

Double robustness, in this form, has a useful implication for estimation. We demonstrate

in Appendix C.1 that, under appropriate regularity conditions, estimators based on the efficient

influence functions ψ1(b, τ1, η) or ξ1(b, τ1, ϕ) are consistent for τ1 if either the outcome means (ωψ
or ωξ) or the propensity scores (κψ or κξ) are estimated consistently. We analyze estimators of this

form in further detail in Section 4.

The population variance of the efficient influence function is the semiparametric efficiency bound.

The respective bounds are presented in Corollary 3.1.

Corollary 3.1. Define the conditional variances

σ2
w(s, x) = EP? [(Y (w)− µw(S,X))2 | S = s,X = x] and

σ2(s, x) = EP? [(Y − ν(S,X))2 | S = s,X = x]
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as well as the expressions

Γw,1(s, x) =
γ(x)

1− γ(x)

(µw(s, x)− µw(x))2

%(x)w(1− %(x))1−w and Λw,1(s, x) =
γ(x)

1− γ(x)

(ν(s, x)− νw(x))2

%(x)w(1− %(x))1−w .

(1) Under the Latent Unconfounded Treatment Model, given in Definition 2.1, the semiparametric

efficiency bound for τ1 is given by

V ?
1 = EP

[
γ(X)

π2

(
σ2

1(S,X)

ρ1(S,X)
+
σ2

0(S,X)

ρ0(S,X)

+ (µ1(X)− µ0(X)− τ1)2 + Γ0,1(S,X) + Γ1,1(S,X)

)]
. (3.12)

(2) Under the Statistical Surrogacy Model, given in Definition 2.2, the semiparametric efficiency

bound for τ1 is given by

V ??
1 = EP

[
γ(X)

π2

((
γ(X)

γ(S,X)

1− γ(S,X)

1− γ(X)

%(S,X)− %(X)

%(X)(1− %(X))

)2

σ2(S,X)

+ (ν1(X)− ν0(X)− τ1)2 + Λ0,1(S,X) + Λ1,1(S,X)

)]
. (3.13)

Remark 3.3. In Appendix C.2, we analyze how the semiparametric efficiency bounds derived in

Corollary 3.1 change if different components of the nuisance parameters η or ϕ are known a priori.

In both models, if the classical propensity score %(X), i.e., the probability of being assigned to

treatment in the experimental sample as a function of covariates, is known, then the semiparametric

efficiency bounds are unchanged.8 This echoes an analogous ancillarity result for estimation of

average treatment effects under unconfoundedness given in Hahn (1998).

By contrast, both semiparametric efficiency bounds change if the propensity score γ(x), i.e., the

probability of being assigned to the observational sample as a function of covariates, is known.

This result is relevant for settings where the experimental sample is known to be drawn from

the same population as the observational sample and indicates that development of estimators

tailored to this setting may be fruitful.9 In the Statistical Surrogacy Model, somewhat curiously,

the efficient influence function ξ1(b, τ1, ϕ) is additionally invariant to knowledge of the distribution,

in the observational sample, of the short-term outcomes conditional on covariates, i.e. the law
8Invariance of the semiparametric efficiency bounds to knowledge of the propensity score %(X) would no longer hold
if the estimands of interest were average long-term effects for the treated population.
9On the other hand, in that context, consideration of the unconditional long-term treatment effect τ = E[Y (1)− Y (0)]
is tenable and natural. We expect the efficiency bound for this functional to be invariant to knowledge of the propensity
score γ(x).
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S | X,G = 1. This invariance is a consequence of the choice (A.27) in construction of the efficient

influence function ξ1(b, τ1, ϕ) in the proof of Theorem 3.1.

Next, we demonstrate that the efficient influence functions ψ1(b, τ1, η) and ξ1(b, τ1, ϕ) expressed

in Theorem 3.1 are, in fact, the unique influence functions for τ1 in their respective models. We

recall that an influence for τ1 is any mean-zero and square integrable function function ψ̃(b) that

satisfies the condition

τ ′1 = EP [ψ̃(B)`′(B)] ,

where τ ′1 is the pathwise derivative of τ1 along an arbitrary parametric submodel evaluated at zero

and `′(B) is the score function of this submodel; see e.g., Chapter 25 of Van der Vaart (1998) for

further discussion.

Theorem 3.2. There are unique influence functions in each model:

(1) Under the Latent Unconfounded Treatment Model, given in Definition 2.1, ψ1(b, τ1, η) is the

unique influence function for τ1.

(2) Under the Statistical Surrogacy Model, given in Definition 2.2, ξ1(b, τ1, ϕ) is the unique

influence function for τ1.

Remark 3.4. Let P ⊂Mλ denote the set of probability distributions that satisfy either the Latent

Unconfounded Treatment Model or the Statistical Surrogacy Model. In the terminology of Chen

and Santos (2018), Theorem 3.2, Part (1), demonstrates that P is locally just-identified by P . As

a result, by Theorem 3.1 of Chen and Santos (2018), all regular and asymptotically linear (RAL)

estimators of τ1 are first-order equivalent under the maintained assumptions. In particular, there are

no RAL estimators of τ1 that have smaller asymptotic variances than others.

Consequently, semiparametric efficiency is equivalent to regularity and asymptotic linearity under

the maintained assumptions. We note that if the propensity score %(x) admits known restrictions,

then the resultant model would be semiparametrically over-identified. In this case, not all RAL

estimators are first-order equivalent. However, since the efficiency bound does not change, the

estimators we propose in the following section remain efficient with known propensity score.10

Moreover, again by Theorem 3.1 of Chen and Santos (2018), the model P does not have any

locally testable restrictions in the sense that there are no specification tests of the maintained
10The semiparametric literature on average treatment effect and local average treatment effect estimation (e.g. Frölich,
2007; Hirano et al., 2003) discusses efficiency as well, despite the fact that the models in question are similarly
just-identified.
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identifying assumptions with nontrivial local asymptotic power. Analogous statements follow from

Theorem 3.2, Part (2). In that sense, the maintained identifying assumptions are minimal.

4. ESTIMATION

We now consider estimation of the long-term average treatment effect τ1.11 The estimators that

we consider can each be viewed as semiparametric Z-estimators associated with an identifying

moment function. That is, each estimator is premised on determining the value τ1 that solves a

sample analogue of a moment condition

EP [g(Bi, τ1, ζ)] = 0 ,

for some identifying moment function g(·), where ζ is an unknown nuisance parameter, replaced

with its estimated counterpart in practice.

Our treatment differs by whether the identifying moment function g(·) is given by the efficient

influence functions ψ1(·) or ξ1(·), derived in Theorem 3.1 or given by some other moment condition.

Moment conditions defined by influence functions are often referred to as Neyman orthogonal

moment conditions. We adapt very general arguments from Chernozhukov et al. (2018) to establish

that these estimators are consistent and asymptotically normal.

Our consideration of estimators based on non-orthogonal moments is selective and is more

specialized. To obtain theoretical guarantees, we restrict attention to estimators that plug-in

nuisance parameter estimates derived from the method of sieves (Chen and Liao, 2015; Chen et al.,

2014). Sufficient conditions for estimators with this structure are generally available, but are more

delicate and difficult to verify. We state and verify these conditions for one of the estimators that we

consider.12

Throughout, it is useful to keep in mind that the efficient influence functions ψ1(·) and ξ1(·) are

the only influence functions in their respective models (i.e., Theorem 3.2). Consequently, all regular

and asymptotically linear estimators are first-order equivalent, that is, their asymptotic variances

are all equal to the semiparametric efficiency bound. Thus, the asymptotic variances of different

estimators are the same, but the conditions under which they are asymptotically normal may be

different.
11In Appendix B, we provide an analogous treatment of estimators of the long-term average treatment effect τ0 in the
experimental population.
12The general high-level conditions in Chen and Liao (2015) and Chen et al. (2014) apply to each of estimators that we
consider. Lower-level conditions, analogous to those discussed in Section 4.2 will exist for these estimators as well.
However, as the derivation of these conditions is lengthy and cumbersome, we provide an illustration of this argument
for only one estimator.
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4.1 Orthogonal Moments. We begin by considering estimators that are built directly on the

influence functions ψ1(·) or ξ1(·), derived in Theorem 3.1 with the “Double/Debiased Machine

Learning” (DML) construction developed in Chernozhukov et al. (2018).

4.1.1 Construction. The DML construction proceeds in two steps. First, estimates of the nuisance

functions η or ϕ, defined in Theorem 3.1, are computed with cross-fitting. Second, estimates of τ1

are obtained by plugging the estimated values of η and ϕ into their respective efficient influence

functions and solving for the values of τ1 that equate the sample means of these estimates of the

efficient influence functions with zero.

Definition 4.1 (DML Estimators). Let η̂(I) and ϕ̂(I) denote generic estimates of η and ϕ based on

the data {Bi}i∈I for some subset I ⊆ [n]. Let {I`}k`=1 denote a random k-fold partition of [n] such

that the size of each fold is m = n/k. The estimator τ̂1,DML is defined as the solution to

1

k

k∑
`=1

1

m

∑
i∈I`

ψ1(Bi, τ̂1,DML, η̂(Ic` )) = 0 or
1

k

k∑
`=1

1

m

∑
i∈I`

ξ1(Bi, τ̂1,DML, ϕ̂(Ic` )) = 0

for the Latent Unconfounded Treatment and Statistical Surrogacy Models, respectively.

Remark 4.1. The fundamental structures underlying standard estimators of average treatment

effects under unconfoundedness can be classified as being based on either “inverse propensity

score weighting” or “outcome regression” (Imbens, 2004); elements of each structure appear in the

estimators formulated in Definition 4.1.13 Inverse propensity score weighted (IPW) estimators, also

referred to as Horvitz and Thompson (1952) estimators, are constructed by weighting the observed

values of outcomes by their inverse propensity scores; see e.g., Rosenbaum and Rubin (1983)

and Hirano et al. (2003). By contrast, outcome regression estimators are constructed by imputing

unobserved potential outcomes with estimates of their expectation conditioned on covariates.

The estimators formulated in Definition 4.1 combine IPW and outcome regression components

with an error-correcting structure comparable to the augmented inverse propensity weighted (AIPW)

estimator of Robins et al. (1995). To illustrate, observe that ψ1(b, τ1, η) can be interpreted as

first approximating τ1 with the outcome regression µ1(x) − µ0(x) in the observational sample.

Heuristically, the biases in this approximation, e.g., induced by regularization, are then corrected by

applying IPW to the residuals of the approximation of µw(x) to µw(s, x) with

w(µ1(s, x)− µ1(x))

%(x)
− (1− w)(µ0(s, x)− µ0(x))

1− %(x)

13Imbens (2004) also discusses estimators based on matching and Bayesian calculations. We do not develop estimators
with these structures in this paper, and view their consideration as an interesting extension.
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computed in the experimental sample and reweighed by γ(x)/(1−γ(x)) to represent an expectation

over the observational sample. However, the correction above may introduce additional biases

through the estimation of µw(s, x); these are in turn corrected by applying IPW to the residuals of

the approximation of µw(s, x) to Y (w) with

w(y − µ1(s, x))

ρ1(s, x)
− (1− w)(y − µ0(s, x))

ρ0(s, x)

computed in the experimental sample. An analogous interpretation can be formulated for the

structure of the efficient influence function ξ1(b, τ1, ϕ).14 Further discussion, at varying levels

of rigor, of this “bias-correction” interpretation of the structure of estimators based on efficient

influence functions is given in Section 4 of Kennedy (2023) and Chapter 7 of Bickel et al. (1993).

Remark 4.2. At a high-level, the cross-fitting construction used in Definition 4.1 is implemented

so that the estimation errors, e.g., µw(Si, Xi) − µ̂w(Si, Xi), and model errors, e.g., Y (Wi) −
µw(Si, Xi), are unrelated for a given observation. Association between these two forms of

error may have particularly pernicious effects in finite-samples if estimates of nuisance functions

suffer from over-fitting. More technically, cross-fitting allows us to avoid imposing Donsker-type

regularity conditions in our asymptotic analysis, which would exclude estimators with non-negligible

asymptotic regularization. Standard implementations of popular machine learning algorithms may

feature such regularization; see Chernozhukov et al. (2016) for detailed discussion and illustration

of this point. Further discussion of cross-fitting methods in semiparametric estimation is given in

Klaassen (1987) and Newey and Robins (2018).

Remark 4.3. We require specialized approaches to estimate the nuisance functions ρw(s, x), µw(x),

and νw(x). We estimate ρw(s, x) by combining separate estimates of each of the objects displayed in

Equation (3.9). We estimate µw(x) and νw(x) by first computing estimates of µw(s, x) and ν(s, x)

in the observational sample, denoted by µ̂w(s, x) and ν̂(s, x), and then computing estimates of

EP [µ̂w(s, x)|W = w,X = x,G = 0] and EP [ν̂(s, x)|W = w,X = x,G = 0] in the experimental

sample. In Appendix C.3, we derive the rate of convergence for particular implementations of

estimators with this structure based on linear sieves.

4.1.2 Large-Sample Theory. We now study the asymptotic behavior of the estimators formulated

in Definition 4.1. First, in Appendix C.1, we demonstrate that, under weak regularity conditions and

under both models, the estimator τ̂1,DML is consistent for τ1 if either the long-term outcome means

14Note that in the term corresponding to the observational sample in ξ1(·), the unobserved treatment indictor w is
replaced by the probability of treatment conditional on short-term outcomes and covariates.
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or the propensity scores are estimated consistently. Second, we establish asymptotic normality by

providing conditions sufficient for the application of Theorem 3.1 of Chernozhukov et al. (2018).

We impose a set of standard bounds on moments of the data, and a set of conditions on the uniform

rates of convergence of nuisance parameter estimators. Throughout, for a collection of scalar-valued

nuisance parameters θ = (θ1, . . . , θ`), we let ‖θ‖P,q = maxi∈[`] (EP |θi(B)|q)1/q.

Assumption 4.1 (Moment Bounds). Let C, c > 0 be constants. Under the Latent Unconfounded

Treatment Model, the moment bounds

‖Y (w)‖P,q ≤ C, EP
[
σ2
w(S,X) | X

]
≤ C,

EP
[
(Y (w)− µw(S,X))2

]
≥ c, and c ≤ EP

[
(µw(S,X)− µw(x))2 | X

]
≤ C

hold for eachw ∈ {0, 1} and λ-almost everyX . Analogous bounds hold for the Statistical Surrogacy

Model, where σ(S,X), ν(S,X), and νw(x) replace σw(S,X), µw(S,X), and µw(x), respectively.

Assumption 4.2 (Convergence Rates). Let P ⊂Mλ be the set of all probability distributions P that

satisfy the Latent Unconfounded Treatment Model stated in Definition 2.1. Consider a sequence

of estimators η̂n(Icn) = (ω̂ψ,n, κ̂ψ,n, π̂n) indexed by n, where In ⊂ [n] is a random subset of size

m = n/k and π̂n = 1
n−m

∑
i∈Icn

Gi. For some sequences ∆n → 0 and δn → 0 and constants

ε, C > 0 and q > 2, that do not depend on P , with P -probability at least 1−∆n,

1. (Consistency in 2-norm) n−1/2 ≤ ‖η̂n − η‖P,2 ≤ δn,

2. (Boundedness in q-norm) ‖η̂n − η‖P,q < C,

3. (Non-degeneracy) ε ≤ κ̂n ≤ 1− ε, where the inequalities apply entry-wise, and

4. (o(n−1/2) product rates) ‖ω̂ψ,n − ωψ‖P,2 · ‖κ̂ψ,n − κψ‖P,2 ≤ δnn
−1/2.

Analogous conditions hold for the Statistical Surrogacy Model, where ϕ replaces η.

Remark 4.4. Assumption 4.2 imposes the restriction that the product of the estimation errors for the

long-term outcome means and propensity scores converges at the rate o(n−1/2).15 These rates can be

achieved, even if the dimensionality of the covariates or the short-term outcomes is increasing with

n, by many standard machine learning algorithms including the Lasso and Dantzig selector (Belloni

et al., 2014; Bickel et al., 2009), boosting algorithms (Luo and Spindler, 2017), regression trees and

random forests (Wager and Walther, 2015), and neural networks (Chen and White, 1999; Farrell

et al., 2021) under appropriate conditions on the structure or sparsity of the underlying model.
15If the true propensity score %(x) is known, then using this information when constructing τ̂1,DML may produce an
estimator that performs well in finite-samples. However, plugging the true propensity score into an estimator based off
of a non-orthogonal moment would probably be inefficient. For example, in Hahn (1998), an IPW type estimator for the
average treatment effect based off of the true propensity score is shown to be inefficient.
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In Appendix C.3, we verify that estimates of µw(x) and νw(x) based on linear sieves can achieve

these rates under sufficiently stringent restrictions on the smoothness of the long-term outcome

means. It is reasonable to expect that analogous results should be available for more complicated

estimators, e.g., featuring penalization or more complicated bases. Results of this form are an

interesting direction for further research.

Theorem 4.1 establishes the asymptotic properties of the estimators formulated in Definition 4.1.

For the sake of brevity, we state the result only for the Latent Unconfounded Treatment Model. An

analogous result holds for the Statistical Surrogacy Model. We provide proofs for both results in

Appendix A.7.

Theorem 4.1. Let P ⊂ Mλ be the set of all probability distributions P for {Bi}ni=1 that satisfy

the Latent Unconfounded Treatment Model stated in Definition 2.1 in addition to Assumption 4.1.

If Assumption 4.2 holds for P , then

√
n(τ̂1,DML − τ1)

d→ N (0, V ?
1 ) (4.1)

uniformly over P ∈ P , where τ̂1,DML is defined in Definition 4.1, V ?
1 is defined in Corollary 3.1,

and d→ denotes convergence in distribution. Moreover, we have that

V̂ ?
1 =

1

k

k∑
`=1

1

m

∑
i∈I`

(ψ1(Bi, τ̂1,DML, η̂(Ic` )))
2 p→ V ?

1 (4.2)

uniformly over P ∈ P , where
p→ denotes convergence in probability. As a result, we obtain the

uniform asymptotic validity of the confidence intervals

lim
n→∞

sup
P∈P

∣∣∣P (τ1 ∈
[
τ̂1,DML ± z1−α/2

√
V̂ ?

1 /n

])
− (1− α)

∣∣∣ = 0 , (4.3)

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

4.2 Non-orthogonal Moments. The moment functions ψ1(·) and ξ1(·) considered in Section 4.1

are quite complicated. Constructing the estimator τ̂1,DML requires estimating several propensity

scores and long-term outcome means. It is natural to ask whether it suffices to consider simpler

estimators based on moment conditions with fewer nuisance functions.

In this section, we consider a suite of estimators that do not use the efficient influence functions

ψ1(·) or ξ1(·) as identifying moment functions. We emphasize estimators that bear a similarity

to standard IPW or outcome regression estimators for average treatment effects, several of which

were initially proposed in Athey et al. (2020a) and Athey et al. (2020b). We verify the asymptotic
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normality of one of these estimators, when nuisance parameters are estimated with the method of

sieves, following ideas developed in (Chen and Liao, 2015; Chen et al., 2014).

4.2.1 Construction. Each of the estimators that we consider can be viewed as a Z-estimator based

on a moment function g(·, τ1, ζ), taking as an argument an unknown nuisance parameter ζ .

Definition 4.2 (Non-orthogonal Moment Estimators). The estimator τ̂1(g) is defined as the solution

to the sample moment condition

1

n

n∑
i=1

g(Bi, τ̂1(g), ζ̂) = 0 ,

where ζ̂ is a generic estimate of ζ based on the data {Bi}ni=1.

We consider two classes of moment functions, differing in whether or not the estimators that they

entail resemble IPW or outcome regression estimators for average treatment effects. In the Latent

Unconfounded Treatment Model, the random variable

gw(Bi, τ1, ζw) =
Gi

π

(
WiYi

ρ1(Si, Xi)
− (1−Wi)Yi

ρ0(Si, Xi)

)
− τ1 , (4.4)

where ζw = (π, ρ1, ρ0), has mean zero under P . The estimator τ̂1(gw), proposed originally by Athey

et al. (2020a), only requires estimation of the nuisance parameters in ζw and can be viewed as an

analogue to the IPW estimator for average treatment effects. In turn, the functions

gor,1(Bi, τ1, ζor,1) =
Gi

π
(µ1(Xi)− µ0(Xi)) and (4.5)

gor,0(Bi, τ1, ζor,0) =
1−Gi

π

γ(Xi)

1− γ(Xi)
(µ1(Si, Xi)− µ0(Si, Xi)) , (4.6)

where ζor,1 and ζor,0 collect nuisance parameters, yield the outcome regression type estimators

τ̂1(gor,1) and τ̂1(gor,0). The estimator τ̂1(gor,0) was originally proposed by Athey et al. (2020a).

Analogously, in the Statistical Surrogacy Model, the moment function

hw(Bi, τ1, ςw) =
GiYi
π

γ(Xi)

1− γ(Xi)

1− γ(Si, Xi)

γ(Si, Xi)

(
%(Si, Xi)

%(Xi)
− 1− %(Si, Xi)

1− %(Xi)

)
− τ1 , (4.7)

where ςw collects nuisance parameters, yields an IPW-type estimator τ̂1(hw) that is similar to an

estimator proposed by Athey et al. (2020b). The moment functions

hor,1(Bi, τ1, ςor,1) =
Gi

π
(ν1(Xi)− ν0(Xi)) and (4.8)

hor,0(Bi, τ1, ςor,0) =
1−Gi

π

γ(Xi)

1− γ(Xi)

(
Wi

%(Xi)
− 1−Wi

1− %(Xi)

)
ν(Si, Xi) , (4.9)
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result in the outcome regression type estimators τ̂1(hor,1) and τ̂1(hor,0), respectively. The estimator

τ̂1(hor,0) was originally proposed by Athey et al. (2020b). Dynarski et al. (2021) use an estimator

closely related to τ̂1(hor,0) with an estimate of ν(s, x) based on linear regression, in their analysis of

the effects of college tuition grants on college complteion rates.

4.2.2 Large-Sample Theory. Theoretical analysis of the large-sample performance of estimators

based on non-orthogonal moment conditions requires a more specialized treatment. Sufficient

conditions for their asymptotic normality in the literature are often more delicate and stronger than

those for the DML estimators considered in Section 4.1. We provide details of this analysis for

the estimator τ̂1(gw) only, as stating and verifying sufficient conditions for asymptotic linearity is

cumbersome. Nevertheless, the basic structure of the conditions that we pose, and the method of

their verification, is applicable to each of the estimators formulated above.

Constructing the estimator τ̂1(gw) requires an estimate of the nuisance parameter ζw. We restrict

attention to procedures that estimate the remaining components of ζw, i.e., ρ1 and ρ0, with linear

sieves. We detail this procedure in Appendix A.8.

Theorem 4.2 establishes the asymptotic normality of the estimator τ̂1(gw) when the nuisance

parameter ζw is estimated with the method of sieves. Stating the precise sufficient conditions for

this Theorem requires additional notation and definitions, which we defer to Appendix A.8.

Theorem 4.2. Under the Latent Unconfounded Treatment Model and Assumption A.3 stated in

Appendix A.8. we have that
√
n(τ̂1(gw)− τ1)

d→ N (0, V ?
1 ) ,

where V ?
1 is the semiparametric efficiency bound for τ1 defined in Corollary 3.1.

We again emphasize that, by Theorem 3.2, any regular and asymptotically linear estimator

τ̂1 for τ1 achieves the semiparametric efficiency bound V ?
1 , if the assumptions that define the

Latent Unconfounded Treatment Model are the only set of restrictions that are imposed. Thus, the

semiparametric efficiency of τ̂1(gw), per se, is to be expected. The substance of Theorem 4.2 is the

asymptotic linearity.

Remark 4.5. Informally, Assumption A.3 requires that:

(1) ζ̂w is o(n−1/4)-consistent;

(2) The parameter space containing ζw is Donsker; and

(3) The sieve space chosen to approximate ζw has limited complexity.

Condition (1) is analogous to the product rate condition in Assumption 4.2. It is weaker in the sense

that no consistent estimators for the nuisance parameters in η that are not in ζw are needed. On
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the other hand, Condition (1) places more stringent conditions on the rate that ζ̂w estimates ζw. In

particular, Assumption 4.2 will still hold in situations where some elements of ζw are estimated

at a rate slower than o(n−1/4), so long as the product of the errors in estimation of the long-term

outcome means and propensity scores is smaller than o(n−1/2).16 Condition (2) is imposed in order

to ensure stochastic equicontinuity for the moment condition ζw 7→ gw(·, τ1, ζw) treated as a process

indexed by ζw. This condition ensures that estimating τ1 and ζw using the same data does not

induce errors that are excessively large. Using sample-splitting would eliminate the need for this

condition. Condition (3) is specific to the sieve approach for estimating nuisance parameters. It

is not directly imposed in Assumption 4.2, but may be needed to justify rate conditions when one

estimates nuisance parameters with sieves.

5. SIMULATION

We now compare the estimators formulated in Section 4 with a simulation calibrated to data from

Banerjee et al. (2015). We find that the DML estimators considered in Section 4.1 are more accurate

than the estimators based on non-orthogonal moments considered in Section 4.2, particularly if a

nonparametric approach is taken to nuisance parameter estimation.

5.1 Data, Calibration, and Design. Banerjee et al. (2015) study randomized evaluations of

several similar poverty-alleviation programs implemented by BRAC, a large non-governmental

organization. These programs allocated productive assets (typically livestock) to participating

households and measured both short-term and long-term economic outcomes.

We restrict our attention to data from the evaluation of the program implemented in Pakistan.

For each of the 854 households in our cleaned sample, survey measurements of the consumption

levels, food security, assets, savings, and outstanding loans were taken prior to, as well as two

and three years after, treatment. We use the pre-treatment measurements as covariates (i.e., Xi),

the two-year post-treatment measurements as short-term outcomes (i.e., Si), and the three-year

post-treatment measurements as long-term outcomes (i.e., Yi). There are 20 pre-treatment covariates

and 21 short-term outcomes. In the main text, the long-term outcome of interest is total household

assets; we give analogous results for total household consumption in Appendix D.5. Appendix D.1

gives further information on the construction and content of these data.

We calibrate a generative model to these data with a Generative Adversarial Network (Goodfellow

et al., 2014), following a method for simulation design developed in Athey et al. (2021). The details
16Imbens (2004) outlines similar heuristics for average treatment effect estimation under unconfoundedness.
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of this calibration are given in Appendix D.2.17 Crucially, a sample drawn from this model consists

of covariates and both treated and untreated short-term and long-term potential outcomes for a

hypothetical household (the vector (Xi, Si(1), Si(0), Yi(1), Yi(0)) in our notation). That is, we

observe the true short-term and long-term treatment effects for each household sampled from this

model, and can measure true long-term average treatment effects by averaging over many simulation

draws.

With this calibrated model, we generate a collection of hypothetical data sets that satisfy either

the Latent Unconfounded Treatment Model or the Statistical Surrogacy Model, as desired. The

quality of various estimators is then determined by measuring their average accuracy in recovering

long-term average treatment effects in a variety of metrics. To generate a hypothetical data set, we

draw a collection of samples from the generative mode of size h · n, where h is some multiplier that

we vary and n is the sample size of the Banerjee et al. (2015) data. Each observation is assigned

to being either “experimental” or “observational” with probability 1/2, and so the experimental

and observational samples have identical distribution of covariates. Treatment for experimental

samples is always assigned uniformly at random. Treatment for observational samples is assigned

with possible confounding. Specifically, we determine treatment probabilities with an increasing

function, indexed by a parameter φ, of each hypothetical household’s true short-term treatment

effects. Larger values of φ indicate more confounding. Details of this simulation design and

parameterization of confounding are given in Appendix D.3.

5.2 Comparison of Methods. We begin by comparing the estimators formulated in Section 4 with

a simple difference between the mean long-term treated and untreated outcomes in the observational

sample

τ̂1,DM =

∑
iGiWiYi∑
iGiWi

−
∑

iGi(1−Wi)Yi∑
iGi(1−Wi)

. (5.1)

This estimator is naive, making no adjustment for confounding in the observational sample, and is

infeasible if treatment is not observed in the observational sample.

Figure 2 compares the absolute bias and root mean squared error of the estimators formulated

in Section 4 with the naive estimator (5.1).18 We compare the use of the Lasso (Tibshirani, 1996),

Generalized Random Forests (Athey et al., 2019), and XGBoost (Chen and Guestrin, 2016) for

nuisance parameter estimation. Details about the implementation of these estimators are given in
17In Appendix D.2, we demonstrate that the joint distribution of data drawn from this model matches the leading
moments of joint distribution of the data from Banerjee et al. (2015) remarkably closely.
18Measurements of the variance of each estimator are displayed in Figures D.9 and D.10. We note that in the Latent
Unconfounded Treatment Model, one of the outcome regression estimators has very small variance when nuisance
parameters are estimated with linear regression. However, the bias of this estimator is very large.
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Appendix D.4. Panels A and B display results for the Latent Unconfounded Treatment and Statistical

Surrogacy Models, respectively. Columns within each panel vary the sample size multiplier h. Each

column displays results for the confounding parameter φ set to zero, indicating no confounding in

the observational sample and labeled as “Baseline,” in addition to two parameterizations indicating

non-zero confounding.

In both the Latent Unconfounded Treatment Model and the Statistical Surrogacy Model, the

biases of the DML estimators considered in Section 4.1 tend to be substantially smaller than the

biases of the alternative outcome regression or weighting estimators considered in Section 4.2, so

long as the nuisance parameters are not estimated by linear regression. The weighting estimator

has performance more comparable to the DML estimator in the Latent Unconfounded Treatment

Model. The performances of the weighting estimator and the outcome regression estimators in the

Statistical Surrogacy Model are more similar.

Figure 3 displays measurements of estimator quality for just the DML estimators in a format

analogous to Figure 2, with the addition of a third row measuring one minus the coverage probability

of confidence intervals constructed around each estimator. We report these estimates of coverage

probabilities in Supplementary Appendix D.5. Confidence intervals constructed with the intervals

given in (A.42) around the estimators formulated in Definition 4.1 have coverage probabilities that

are reasonably close to the nominal level.

6. CONCLUSION

We study the estimation of long-term treatment effects through the combination of short-term

experimental and long-term observational data sets. We derive efficient influence functions and

calculate corresponding semiparametric efficiency bounds for this problem. These calculations

facilitate the development of estimators that accommodate the applications of standard machine

learning algorithms for estimating nuisance parameters. We demonstrate with simulation that these

estimators are able to recover long-term treatment effects in realistic settings.

Important unresolved practical issues remain. Methods for choosing valid and informative short-

term outcomes and assessing of the sensitivity of estimates to violations of identifying assumptions

would be valuable. Additional useful extensions include the incorporation of instruments and

continuous treatments and the accommodation of settings with limited covariate overlap.

In the case of estimation of average treatment effects under unconfoundedness, recent promising

work (e.g., Athey et al., 2018; Bradic et al., 2019; Tan, 2020) has developed estimators that are

specifically optimized to handle high-dimensional covariates and are able to attain various notions
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FIGURE 2. Comparison of Estimators

Panel A: Latent Unconfounded Treatment
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Panel B: Statistical Surrogacy
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Notes: Figure 2 compares measurements of the absolute bias and root mean squared error for the estimators
formulated in Section 4, in addition to the difference in means estimator defined in (5.1). The y-axes are displayed
in logs, base 10. The long-term outcome is total household assets. Panels A and B display results for the Latent
Unconfounded Treatment and Statistical Surrogacy Models defined in Definition 2.1 and Definition 2.2, respectively.
The columns of each panel vary the sample size multiplier h. Each sub-panel displays results for the baseline,
unconfounded, case, as well as for the cases that the confounding parameter φ has been set to 1/2 and 2/3. Results
for each estimator are displayed with dots of different colors. Results for different nuisance parameter estimators are
displayed with dots of different shapes.
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FIGURE 3. Finite-Sample Performance with Different Nuisance Parameter Estimators

Panel A: Latent Unconfounded Treatment
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Panel B: Statistical Surrogacy
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Notes: Figure 3 displays measurements of the quality of the estimators formulated in Section 4.1 implemented with
several alternative choices of nuisance parameter estimators. The long-term outcome is total household assets. Panels A
and B display results for the estimators defined in Definition 4.1 for the Latent Unconfounded Treatment and Statistical
Surrogacy Models defined in Definition 2.1 and Definition 2.2, respectively. The columns of each panel vary the sample
size multiplier h. The rows of each panel display the absolute value of the bias, one minus the coverage probability, and
the root mean squared error of each estimator, from top to bottom, respectively. A dotted line denoting one minus the
nominal coverage probability, 0.05, is displayed in each sub-panel in the third row. Each sub-panel displays a bar graph
comparing measurements of the performance of the estimator defined in Definition 4.1, constructed with three types of
nuisance parameter estimators, with the difference in means estimator (5.1). Each sub-panel displays results for the
baseline, unconfounded, case, as well as for the cases that the confounding parameter φ has been set to 1/2 and 2/3.
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of optimality under weak assumptions on, e.g., the sparsity of the outcome regression or propensity

score models. It is not immediately clear how to apply these ideas to long-term average treatment

effects. Further consideration of this problem would be a potentially valuable extension, as the

resultant estimators may be particularly well-suited to the case where there are many short-term

outcomes. Some progress on a related problem (where, effectively, there is a single short-term

outcome) has been made by Viviano and Bradic (2021).
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