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Abstract

We review approaches to statistical inference based on randomization. Permutation tests are

treated as an important special case. Under a certain group invariance property, referred to as the

“randomization hypothesis,” randomization tests achieve exact control of the Type I error rate in

finite samples. Although this unequivocal precision is very appealing, the range of problems that

satisfy the randomization hypothesis is somewhat limited. We show that randomization tests

are often asymptotically, or approximately, valid and efficient in settings that deviate from the

conditions required for finite-sample error control. When randomization tests fail to offer even

asymptotic Type 1 error control, their asymptotic validity may be restored by constructing an

asymptotically pivotal test statistic. Randomization tests can then provide exact error control

for tests of highly structured hypotheses with good performance in a wider class of problems.

We give a detailed overview of several prominent applications of randomization tests, including

two-sample permutation tests, regression, and conformal inference.
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1 Introduction

Randomization as a distinct approach to statistical inference dates back to at least Fisher (1935). See Box

(1978) and David (2008) for historical accounts. Fisher (1935) considers a simple experiment. A colleague

asserts that they can discern the difference between milk poured into tea and tea poured into milk. Skeptical,

Fisher prepares eight cups of tea, with four cups poured in each way. These cups are presented to the colleague

in a randomized order. Consider the null hypothesis that Fisher’s colleague cannot discriminate between the

two preparations, and so assigns them labels randomly. There are 70 ways of dividing the eight cups of tea

into two groups of four. Under the null hypothesis, the probability that Fisher’s colleague correctly groups

the two types of tea is 1/70. In modern terms, if Fisher’s colleague correctly groups the two types of tea,

then we can reject the null hypothesis with a p-value equal to 1/70.

Fisher’s exposition of this simple experiment initiated a revolution in our view of the role of randomization

in experimental design, statistical methodology, and science at large (Salsburg, 2001). Further classical

developments were given by Pitman (1937a,b, 1938). A more mathematical treatment of randomization

inference and the construction of randomization tests was established by Lehmann (1949), Lehmann and

Stein (1949), and Hoeffding (1952), among others. Today, randomization tests remain an active field for

methodological research, and are widely used throughout basic and applied science.

This article gives an exposition and selective review of the modern perspective on randomization tests for

both applied economists and econometric theorists. Part of the allure of randomization tests is that, for some

problems, they can offer exact control of the Type 1 error rate, without resorting to parametric assumptions

or relying on asymptotics. As most modern econometric methods rely on asymptotics, the exactness offered

by randomization inference can be comforting, if not liberating. This sentiment, however, should be regulated

by some important caveats. First, the specific settings where one can apply randomization tests to achieve

exact, finite-sample error control are somewhat limited. In particular, exact error control is obtained only

under a condition referred to as the“randomization hypothesis.” Second, even when the randomization

hypothesis holds, and so exact error control is achieved, it is generally only through asymptotics that issues

like efficiency, power, and sample size requirements can be well-understood. Finally, the use of randomization

tests when the randomization hypothesis fails may lead to lack of Type 1 error control, even in large samples.

However, it will be argued that if a randomization test is based on an appropriate choice of test statistic,

meaning one that is asymptotically pivotal under the null hypothesis, then consistency of the randomization

test can be restored while preserving the exactness of the test when the randomization hypothesis holds.

Thus, in problems that do not meet the requirements needed for exact inference, suitably constructed

randomization tests control the Type 1 error rate asymptotically. One goal of this paper is to present the

intuition for such a claim. In principle, then, randomization tests balance exact error control for tests of

highly structured hypotheses with good performance in a wider class of problems. In practice, care must be

taken to meet these dual goals. Achieving this balance is the main emphasis of this article.
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The methodological literature on randomization tests is extensive. We provide a limited review through-

out. Several book length treatments include Edgington (1995), Pesarin (2001), Good (2005), Solari et al.

(2009), Pesarin and Salmaso (2010), Salmaso et al. (2011), and Berry et al. (2019). Kennedy (1995) gives

a review targeted to an econometric audience. For the most part, our discussion will center on the validity

of approaches based on randomization inference for testing various null hypotheses. Classical analyses of

the efficiency of randomization tests include Albers et al. (1976), Bickel and Van Zwet (2011), and Romano

(1989). More recent treatments include Berrett et al. (2021), Kim et al. (2022), and Dobriban (2022). Our

paper is similar in notation and spirit to the introductory treatment in Lehmann and Romano (2022), Chap-

ter 17. Although the presentation here does not include many proofs, we aim to provide the basic intuition

for statements of results.

The applied literature that makes use of randomization tests is similarly large. For example, roughly

one-third of papers published in the journal Experimental Economics in 2009 made use of the two-sample

Wilcoxon test (Chung and Romano, 2016b).1 Young (2019) re-analyses 53 experiments from leading eco-

nomics journals and finds that the results of methods based on randomization inference are more robust

than parametric alternatives. More generally, permutation and randomization tests have been applied to

many diverse fields, such as brain imaging (Maris and Oostenveld, 2007), biology (Blackford et al., 2009),

and genomics (Stranger et al., 2007).

We discuss several widely encountered applications of randomization inference in applied econometrics.

Further applications include the methods considered by Ganong and Jäger (2018), Rambachan and Roth

(2020), Chung and Olivares (2021), and Borusyak and Hull (2023), among many others. For reasons of

space, we do not give a dedicated treatment of randomization tests of conditional independence. See, e.g.,

Doran et al. (2014), Shah and Peters (2020), Berrett et al. (2020), Kim et al. (2022), and Kim et al. (2023)

for several recent contributions to the literature on this problem.

We will soon define precisely what we mean by randomization inference or a randomization test. Indeed,

the terms have been used somewhat ambiguously in the literature; see Zhang and Zhao (2023) for discussion.

At a high level, randomization tests can be conducted when, under the null hypothesis, there are transfor-

mations of the data that preserve the distribution of the data. If this holds, then a null distribution may

be obtained by computing the test statistic over all transformed data sets. This meaning generalizes the

familiar two-sample permutation test; i.e., the setting in which two independent i.i.d. samples are observed

and one is interested in testing the null hypothesis that both samples come from the same distribution. If the

null holds, then the true null distribution of any test statistic is the same as that of the statistic computed

over a randomly permuted data set. This argument will be made precise in Section 2.

2 The Basics of Randomization Inference

1Similarly, Okeh (2009) samples a collection of medical studies and finds that roughly one-third make use of the two-sample
Wilcoxon test.
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2.1 The Randomization Hypothesis

The observed data X are valued in a sample space X . The unknown probability mechanism generating X

is P and belongs to some set Ω. As we will see, this setup applies to the usual super-population setting as

well as finite population settings. The problem is to test null hypothesis H0 : P ∈ Ω0 ⊂ Ω. The following

assumption is called the randomization hypothesis; if it holds, then tests can be constructed based on any

statistic and the resulting test will obtain exact finite-sample Type 1 error control.

Definition 2.1 (The Randomization Hypothesis). Let G be a finite group of transformations g of X onto

itself. The null hypothesis H0 implies that the distribution of X is invariant under the transformations in

G; i.e., for every g in G, gX and X have the same distribution whenever X has distribution P in Ω0.

Example 2.1 (Sign Changes and the One-sample Problem). Suppose that the observed data X = X(n)

collects the independent observations X1, . . . , Xn. Each observation Xi has distribution P on R. Let µ(P )

denote the mean of P , assumed finite. Consider the problem of testing the null hypothesis H0 : µ(P ) = 0

against the alternative H1 : µ(P ) 6= 0. For now, assume that the distribution P is symmetric about its me-

dian. So, under H0, P has mean 0 and is symmetric about 0. What transformations G apply? Let (ε1, . . . , εn)

be any vector with each entry either 1 or −1. Under H0, the data (X1, . . . , Xn) and (ε1X1, . . . , εnXn) have

the same distribution. The randomization hypothesis thus holds with G identified with the collection of

2n vectors of length n with entries 1 or −1. A randomization test can be constructed by recomputing any

test statistic, such as the absolute sample mean |X̄n| ≡ |
∑n
i=1Xi/n|, over the 2n data sets of the form

(ε1X1, . . . , εnXn), as each εi varies in {−1, 1}.

This example generalizes to the multivariate or high-dimensional situation where Xi = (Xi,1, . . . , Xi,d)

is vector in Rd. Testing a high-dimensional mean vector has received a lot of attention in recent years; see,

e.g., Wang et al. (2015), Wang and Xu (2019) and Huang et al. (2022). The randomization hypothesis holds

with the same group G if it is assumed Xi and −Xi have the same distribution under the null hypothesis.

Thus, the construction will apply if one is willing to assume a semi-parametric model of symmetry under

the null hypothesis. Of course, one may wish to test a mean vector in a nonparametric setting that does not

assume such symmetry. One of the themes of this paper is that randomization tests are often asymptotically

valid, even when a suitable randomization hypothesis does not hold exactly.

Example 2.2 (Two-Sample Permutation Tests). Suppose that the observed data consists of the independent

samples (X1, . . . , Xm) and (Y1, . . . , Yn). The problem is to test whether they are drawn from the same

distribution. Here, the null hypothesis H0 is that the samples are generated from the same probability

law. Under the null hypothesis H0, the observations can be permuted, or assigned at random to either

of the two groups, without changing the distribution of the data. A little more formally, combine the

data as Z(N) = (Z1, . . . , ZN ) = (X1, . . . , Xm, Y1, . . . , Yn). Let π = (π(1), . . . , π(N)) be a permutation of

[N ] = {1, . . . , N}, treated as an arbitrary bijection from [N ] to [N ]. The permuted data Z
(N)
π are given

by Z
(N)
π = (Zπ(1), . . . , Zπ(N)) . Under the null hypothesis H0, the random variables Z(N) and Z

(N)
π have
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the same distribution. The randomization hypothesis thus holds with G identified with the collection of

N ! permutations of the set [N ]. Again, a randomization test can be constructed by recomputing any test

statistic over the N ! data sets of the form Z
(N)
π . If the data are real-valued and the chosen test statistic is

a function of the ranks of the observations, then the resulting test is a two-sample rank test. If the data

have no ties, then the null distribution can be tabled. The classic example is the Wilcoxon (or, equivalently,

the Mann-Whitney) test. Notice that nothing has required that the data be real-valued. In fact, the data

can be valued in any sample space. In particular, they may be vector-valued and high-dimensional, as is

often the case in genomics. For some recent entries into this literature, see Biswas and Ghosh (2014) and

Cousido-Rocha et al. (2019).

2.2 General Construction of a Randomization Test

Let T (X) be any real-valued test statistic chosen to test the null hypothesis H0. Suppose the group G has

M elements. (In fact, the ideas generalize to infinite groups as well.) Given X = x, let

T (1)(x) ≤ T (2)(x) ≤ · · · ≤ T (M)(x)

be the values of T (gx) as g varies in G, ordered from smallest to largest. Fix a nominal level α, 0 < α < 1,

and let k be defined by

k = M − bMαc , (1)

where bMαc denotes the largest integer less than or equal to Mα. Let M+(x) and M0(x) be the number of

values T (j)(x), as j varies over 1, . . . ,M , which are greater than T (k)(x) and equal to T (k)(x), respectively.

Define the test function

a(x) =
Mα−M+(x)

M0(x)
.

The assumption that G is a group ensures that the functions T (k)(·), M+(·), M0(·), and a(·) are invariant

under G; that is, a(gx) = a(x) for all g ∈ G and x ∈ X .

Define the randomization test function φ(X) to be equal to 1, a(X), or 0 according to whether T (X) >

T (k)(X), T (X) = T (k)(X), or T (X) < T (k)(X), respectively. Randomization tests have exact finite-sample

Type 1 error control.

Theorem 2.1. (Hoeffding, 1952) If P ∈ Ω0 satisfies the randomization hypothesis, then

EP [φ(X)] = α for all P ∈ Ω0 . (2)

Proof. By construction, for every x in X ,

∑
g∈G

φ(gx) = M+(x) + a(x)M0(x) = Mα . (3)
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Replacing x by X in (3) and taking expectations yields

Mα = EP

∑
g∈G

φ(gX)

 =
∑
g∈G

EP [φ(gX)] .

By the randomization hypothesis, EP [φ(gX)] = EP [φ(X)], so that

Mα =
∑
g∈G

EP [φ(X)] = MEP [φ(X)] ,

and the result follows.

When 0 < a(x) < 1, the above construction utilizes randomization in order to get exact level α Type

1 error.2 Indeed, the construction accounts for possible ties in the recomputed test statistics, as well as

the possibility that Mα is not an integer. If one prefers to use a non-randomized test, then a conservative

approach would be to reject the null hypothesis if and only if T (X) exceeds T (k)(X). Put another way, the

acceptance region of this non-randomized test is

{X : T (X) ≤ T (k)(X)} . (4)

A corresponding conservative p-value is then

p̂ =
1

M

∑
g∈G

I{T (gX) ≥ T (X)} . (5)

That is, the p-value (5) satisfies P{p̂ ≤ α} ≤ α for each P ∈ Ω0.

Remark 2.1. When |G| is large, it is sometimes necessary to resort to a stochastic approximation to the

randomization test described above. With some care, this approximation can be done in a way that preserves

the finite-sample validity of the randomization test. In order to describe one such construction, let g1 be the

identity transformation, so T (g1X) = T (X), and let g2, . . . , gB be, e.g., i.i.d. ∼ Unif(G). It is possible to

show that {T (gjX), 1 ≤ j ≤ B} is exchangeable, from which it follows further that

T (X)|T (1)(X) . . . , T (B)(X) ∼ Unif({T (1)(X) . . . , T (B)(X)}) ,

where T (1)(X) ≤ · · · ≤ T (B)(X) are the ordered values of T (gjX), 1 ≤ j ≤ B. To see that {T (gjX), 1 ≤ j ≤

B} is exchangeable, the randomization hypothesis implies that

(T (g1X), . . . , T (gBX))
d
= (T (g1gX), . . . , T (gBgX)) , (6)

2Moreover, in some problems, randomization tests form a complete class of tests, essentially meaning that one can restrict
attention to the class of randomization tests without missing out on more powerful tests; see Lehmann (1949) or Lehmann and
Romano (2022), Corollary 5.11.1. Put another way, any level α test may be replaced by a randomization test that is exact level
α and with at least as much power against all alternatives.
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where g ∼ Unif(G), independently of g2, . . . , gB and X. But, the gig are i.i.d. ∼ Unif(G), and hence

(g1g, . . . , gbg) is exchangeable. Therefore, the righthand-side of (6) is exchangeable, and so the lefthand-side

is as well. It now follows that the construction above may be applied verbatim with G simply replaced by

{g1, . . . , gB}. Moreover, a valid p-value may be constructed as in (5) with M replaced by B and the sum

is just over g1, . . . , gB . Finally, a similar argument holds if g2, . . . , gB are sampled with replacement from

G excluding the identity. The only change is that (gg1, . . . , ggB) can be shown to be exchangeable and

distributed as B elements taken randomly without replacement from G. See Hemerik and Goeman (2018)

and Ramdas et al. (2023) for further discussion and alternatives.

3 Approximation and Asymptotic Validity

The randomization hypothesis may hold for the null hypothesis P ∈ Ω0, while one is really interested in

testing a different null hypothesis, say P ∈ Ω̄0, where Ω0 ⊂ Ω̄0. That is, in Example 2.1, one may be

interested in testing whether each component of the mean of a random vector is equal to zero. Likewise, in

Example 2.2, one may be interested in testing the whether the means of two distributions are equal. In many

problems with this characteristic, randomization tests can still be quite useful. In particular, randomization

tests are often asymptotically valid.

3.1 Large-Sample Behavior of the Randomization Distribution

Consider a sequence of situations with X = X(n), P = Pn, X = Xn, G = Gn, T = Tn, etc. defined for each

integer n. Let R̂n denote the randomization distribution of Tn, defined by

R̂n(t) = M−1n
∑
g∈Gn

I{Tn(gX(n)) ≤ t} . (7)

So, R̂n is the distribution of Tn(GX(n)) given X(n), where G has the uniform distribution on Gn, indepen-

dently of (n).3 When the group under consideration is based on permutations, the randomization distribution

may also be called the permutation distribution. The threshold T (k)(X(n)) used in the construction of the

randomization test φ in (3) can be written

r̂n(1− α) = inf{x : R̂n(x) ≥ x} . (8)

Essentially, the randomization test rejects if Tn(X(n)) > r̂n(1−α), though the earlier construction accounts

for the discreteness and possible ties in the randomization distribution. In most cases, the randomization

distribution can be approximated by a continuous distribution and the need to randomize is asymptotically

negligible. Thus, we often just use the slightly conservative test that rejects when Tn(X(n)) > r̂n(1− α).

3If the randomization hypothesis holds, then R̂n is also the conditional distribution of Tn(Xn) given the set {T (j)(Xn) :
1 ≤ j ≤Mn}.
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In order to fully understand the operating characteristics of a randomization test, particularly Type 1

error control and power, it is necessary to understand how the (random) critical value r̂n(1 − α) and the

randomization distribution R̂n behave, both under the null hypothesis H0 and under appropriate sequences

of alternatives. Observe that

E[R̂n(t)] = P{Tn(GnX
(n)) ≤ t} , (9)

where Gn is, as before, a random variable distributed uniformly on Gn, independently of X(n). If the

randomization hypothesis holds, then

E[R̂n(t)] = P{Tn(X(n)) ≤ t} = Rn(t) , (10)

where Rn is the true unconditional distribution of the test statistic Tn. So, if Tn converges in distribution

to a c.d.f. R(·) which is continuous at t, it follows that

E[R̂n(t)]→ R(t) . (11)

If, in addition, the randomization distribution R̂n settles down to some nonrandom distribution, then it

must be the same distribution as that of the unconditional limiting distribution of the test statistic Tn.

Remark 3.1. Intuitively, the randomization distribution should converge to the distribution R in some

asymptotic sense, at least under the randomization hypothesis. To see this, recall that, under the random-

ization hypothesis, the randomization test has exact level α. Apart from the issue of ties and discreteness

in the randomization distribution, the (unconditional) probability that Tn exceeds r̂n(1 − α) is close to α,

and so r̂n(1− α) should be close to the true quantile rn(1− α). But then, rn(1− α) is close to the quantile

r(1 − α), at least if the limiting distribution R(·) has a unique well-defined 1 − α quantile. This intuition

is correct in most cases, but does not always hold, if, for example, the statistic Tn(gX(n)) is constant as g

varies over G.

Hoeffding’s condition reduces the study of the randomization distribution to that of a sequence of non-

random distributions at the expense of the introduction of a little further randomness. To this end, let G′n

have the same distribution as Gn above, with X(n), Gn, and G′n mutually independent.

Definition 3.1 (Hoeffding’s Condition). We say that Hoeffding’s condition holds if

(Tn(GnX
(n)), Tn(G′nX

(n)))
L→ (T, T ′) (12)

under Pn, where T and T ′ are independent, each with common c.d.f. R(·).

Theorem 3.1. Assume that Hoeffding’s Condition holds. Then, under Pn,

R̂n(t)
P→ R(t) (13)
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for every t which is a continuity point of R. Let r(1− α) = inf{t : R(t) ≥ 1− α}. Suppose R is continuous

and strictly increasing at r(1− α). Then, under Pn,

r̂n(1− α)
P→ r(1− α) .

Conversely, if (13) holds for some limiting c.d.f. R whenever t is a continuity point, then (12) holds.

For a proof, see Lehmann and Romano (2022), Theorem 17.2.3.

3.2 The One-sample Problem

To fix concepts, let us return to Example 2.1. Let Pn = Pn denote the joint distribution of the sample

X1, . . . , Xn. Assume that each Xi has finite variance under P . Here, characterizing the asymptotic behavior

of the randomization distribution is particularly easy for the statistic Tn = n1/2X̄n, whether or not the

randomization hypothesis holds. There are several ways to see this. First, note that the randomization

distribution R̂n is simply the distribution of n−1/2
∑
i εiXi, conditioned on the data, where ε1, . . . , εn are

i.i.d., each 1 or −1 with probability 1/2. Clearly, this (conditional) distribution has mean zero and variance

n−1
∑n
i=1X

2
i . By an appropriate central limit theorem, this distribution converges to a normal distribution

with mean zero and variance EP [X2
i ] (not VarP (Xi)). Indeed, Hoeffding’s Condition can be verified with R

given by N(0, EP [X2
i ]); see Lehmann and Romano (2022), Example 17.2.4.

Although this calculation was straightforward, it is perhaps useful to provide some additional intuition,

which will generalize to other choices of Tn. The behavior of the randomization distribution when Xi has

distribution P is the same as the behavior of the randomization distribution when Xi has distribution P s,

where P s is the symmetrized version of P , i.e., P s is the unconditional distribution of εi|Xi|. To see this,

observe that the randomization distribution depends only on the values |X1|, . . . , |Xn|. But the distribution

of |Xi| under P is the same as that under P s. So, the problem of studying the behavior of R̂n under P is

reduced to the equivalent problem under P s. But the randomization hypothesis holds under P s and so the

behavior of R̂n under P s should be that of the limiting unconditional distribution of the test statistic. By

the ordinary central limit theorem, this limiting distribution is N(0,VarP s [Xi]) = N(0, EP [X2
i ]). Therefore,

we can conclude that, under any P with finite variance σ2(P ),

R̂n(t)
P→ Φ(t/σ(P )) and r̂n(1− α)

P→ σ(P )z1−α .

Let φn be the level α randomization test based on the test statistic Tn. If the distribution P has mean 0,

then it easily follows that EP [φn]→ α.

To summarize, for the problem of testing whether the mean of P is zero against the alternative that

the mean exceeds zero (or, with similar results, against two-sided alternatives), the randomization test is
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asymptotically level α. Of course, φn is exact level α if the underlying distribution is symmetric about zero;

otherwise, it is at least asymptotically pointwise level α, as long as σ2(P ) <∞.

One can also easily derive the (local) limiting power of the randomization test. Assume that the underly-

ing distribution Pn is N(hn−1/2, σ2). First, by the above reasoning (or, by verifying Hoeffding’s Condition),

if h = 0, then r̂n(1 − α) → σz1−α in probability. By contiguity, it follows that, under N(hn−1/2, σ2),

r̂n(1− α)→ σz1−α in probability as well. Under N(hn−1/2, σ2), the test statistic Tn converges in distribu-

tion to N(h, σ2). Therefore, by Slutsky’s Theorem, the limiting power of the test φn against the alternative

N(hn−1/2, σ2) is given by

EPn [φn]→ P{σZ + h > σz1−α} = 1− Φ

(
z1−α −

h

σ

)
. (14)

In fact, this is also the limiting local power of the uniformly most powerful (UMP) test when the variance

is known; it is also the local limiting power of the uniformly most powerful unbiased (UMPU) test when

the variance is unknown. Hence, to first order, there is asymptotically no loss in power when using the

randomization test, as opposed to the UMP test, but the randomization test has the advantage that its size

is α over all symmetric distributions. In statistical terminology, we say that the asymptotic relative efficiency

of the randomization test with respect to the UMP or UMPU test is one. In fact, the relative efficiency is

one whenever the underlying family is a quadratic-mean-differentiable location family with finite variance.

One benefit of randomization tests is that one does not have to assume a parametric model, like nor-

mality. In practice, critical values can be obtained from the exact randomization distribution, or its Monte

Carlo approximation obtained by randomly sampling elements of G. In summary, two additional benefits

are revealed by asymptotics. First, the randomization test may be used in large samples even when the ran-

domization hypothesis fails; in the one-sample case, this means the assumption of symmetry is not required.

Second, asymptotics allow us to perform local power calculations and show that, even under normality, very

little power is lost when using a randomization test as compared to the UMP or UMPU test; in fact, the

randomization test and the UMP or UMPU test have the same limiting local power function against normal

contiguous alternatives.

The above considerations generalize in two important ways: the arguments apply to other test statistics

and to vector-valued observations. For example, consider a test statistic Tn with some distribution P that is

symmetric about 0. Assume that Tn is asymptotically linear in the sense that, for some (influence) function

ψP (·), assumed to be an odd function, we can write

Tn = n−1/2
n∑
i=1

ψP (Xi) + oP (1) , (15)

where EP [ψP (Xi)] = 0 and τ2P = VarP [ψP (Xi)] < ∞. Let R̂n denote the randomization distribution based

on Tn and the group of sign changes. Then, Hoeffding’s condition holds with Pn = Pn and R(t) = Φ(t/τ(P )).
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As a consequence

R̂n(t)
P→ Φ(t/τ(P )) . (16)

But, by the argument presented earlier, the behavior of the randomization distribution under an asymmetric

distribution P is the same as that under the symmetrized distribution P s. Thus, we can also conclude

R̂n(t)
P→ Φ(t/τ(P s) and r̂n(1− α)

P→ τ(P s)z1−α .

Such results can be applied to general location models; see Lehmann and Romano (2022), Theorem 17.2.4.

Under general conditions, the limiting local power of the randomization test based on an optimal test statistic

(such as Rao’s score statistic) is the same as that of the Rao test and hence is locally asymptotically uniformly

most powerful. The randomization test, however, is robust to model misspecification. As an example, the

sample median is an optimal estimator in a double exponential location model. If a randomization test is

based on the sample median, it exactly controls Type 1 error for symmetric distributions, asymptotically

controls Type 1 error under asymmetry, and has optimal local asymptotic power under the assumed model.

3.3 Testing Randomness and the Hot Hand Fallacy

The features of the simple example discussed in Section 3.2 play out in real data. In a landmark paper in

behavioral economics, Tversky and Kahneman (1971) posit that people tend to find small samples “overly

representative” of the populations from which they are drawn. They refer to this tendency as belief in the

“law of small numbers.” One of the main pieces of empirical support for the law of small numbers comes

from the literature on the “Hot Hand Fallacy,” initiated by Gilovich et al. (1985), henceforth GVT. GVT

document that there is widespread belief in the “Hot Hand” in basketball. That is, people believe that

basketball players are more likely to make a shot after making several shots than after missing several shots.

GVT hypothesize that this belief is erroneous, i.e., that sequences of basketball shots are i.i.d., asserting

that people infer positive dependence from randomly occurring streaks of consecutive makes or misses.

To test this hypothesis, GVT conduct a controlled experiment. They arrange for the members of the

Cornell University men’s and women’s varsity basketball teams to each shoot n = 100 consecutive shots,

and record whether each shot was made or missed. For each shooter i, let the binary variable Xi,j indicate

whether the jth shot was made or missed. Formally, GVT are interested in testing the null hypotheses

Hi
0 : The sequence Xi,1 . . . , Xi,n is i.i.d. Bernoulli with unknown success rate qi , (17)

for each shooter i, against alternatives in which the probabilities of makes and misses immediately following

streaks of consecutive makes or consecutive misses are greater than their unconditional probabilities. To do
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this, they consider test statistics of the form

Di,k =
1

|Makek|
∑

j∈Makek

Xi,j −
1

|Missk|
∑

j∈Missk

Xi,j , (18)

where Makek and Missk are the sets of indices j in 1, ..., n such that Xi,j−1 = 1, . . . , Xi,j−k = 1 and

Xi,j−1 = 0, . . . , Xi,j−k = 0, respectively. That is, the statistic Di,k measures the difference between the

proportion of makes following k consecutive makes and k consecutive misses. GVT compare measurements

of Di,k to critical values obtained by viewing Di,k as the test statistic in a two-sample t-test. They find

that they cannot reject the null hypotheses (17). This finding became widely cited and used as support for

economic and behavioral models that incorporate belief in the law of small numbers (Thaler and Sunstein,

2009; Barberis and Thaler, 2003).

Miller and Sanjurjo (2018) make two interesting observations, raising doubt in the GVT result. First, they

observe that, under the null hypothesis (17), the statistic Di,k is negatively biased.4 That is, the expectation

of the statistic Di,k is less than zero under the null hypothesis (17). Second, they observe that, under the null

hypothesis (17), the distribution of the sequence Xi,1 . . . , Xi,n is invariant to permutations. Consequently,

tests with exact finite-sample error control can be constructed by computing the randomization distribution

associated with the statistic Di,k. They argue that the randomization tests reverse the GVT results, i.e,

that the negative bias was masking evidence of positive sequential dependence.

To get a quantitative sense of the factors at play here, Figure 1 displays histograms of the randomization

distribution for the statistic Di,k for two shooters from the GVT experiment, with k = 3. The observed values

of each statistic are displayed with vertical dashed teal lines. The means of the randomization distribution

are displayed with vertical dotted black lines. These means are meaningfully different from zero, and can

be treated as estimates of the bias of Di,k under the the null hypothesis (17). The randomization p-value

(5) is given by the total mass of the randomization distribution that exceeds the observed statistics. The

randomization p-values for the two shooters displayed in Figure 1 are 0.0008 and 0.375, respectively.

Ritzwoller and Romano (2022) revisit these data and give the following result.

Theorem 3.2. Let R̂n,k(t) denote the randomization distribution associated with the statistic Di,k. If the

sequence X1,i, . . . , Xn,i is i.i.d. Bernoulli(q) random variables, then

√
n

σ2
k(q)

D̂i,k
d→ N (0, 1) and R̂n,k(t)

P→ Φ(t/σk(q)) , (19)

where σ2
k(q) = (q (1− q))1−k ((1− q)k + qk).

The convergence (19) verifies that the randomization distribution of the test statistic D̂i,k settles down to its

limiting normal distribution. Even for n = 100, the limiting normal distribution is a good approximation to

4This bias is related to the bias in dynamic fixed-effect models documented in Nickell (1981).
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Figure 1: Normal Approximation to the Randomization Distribution
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Notes: Figure 1 displays histograms of the randomization distributions associated with the statistic Di,k for two shooters
from the GVT experiment. In both cases, we take k = 3. The observed values of the statistic Di,k are displayed with teal
vertical dashed lines. The mean values of the randomization distributions are displayed with a black vertical dotted line. The
purple curves give the densities of the limiting normal distribution N

(
0, σ2

k(q̂i)
)
, scaled by 1/

√
n, where we recall that the

observed success probability is given by q̂i = n−1
∑n

j=1Xi,j . The green curves are leftward shifts of the purple curve by the
means of the randomization distributions.

the randomization distribution. The purple curves in Figure 1 display densities of the normal distributions

N
(
0, n−1σ2

k(q̂i)
)
, where we proxy the unknown true success probabilities qi with their plug-in estimates

q̂i = n−1
∑n
j=1Xi,j . The green curves result from shifting the purple curves to the left by the means of the

randomization distributions, i.e., they display a bias-correction to the limiting normal approximation.

Moreover, Ritzwoller and Romano (2022) demonstrate that results analogous to Theorem 3.2 hold even

if the null hypothesis (17) is violated. In particular, they give simple regularity conditions under which

statements analogous to (19) hold, that permit the distribution of the sequence X1,i, . . . , Xn,i to exhibit

positive sequential dependence. These results allow Ritzwoller and Romano (2022) to measure the power

of the randomization test exhibited in Figure 1 against realistic alternatives. They find that GVT did not

collect enough data to detect reasonable departures from randomness. Moreover, they conclude that the

Miller and Sanjurjo (2018) finding that the data deviate from randomness was entirely driven by Shooter

109, displayed on the left in Figure 1. If this shooter is omitted from the sample, the data are insufficient

to reject the null hypotheses (17). That is, the empirical literature of the hot hand fallacy is founded on

conclusions drawn from insufficient samples. In our view, this is itself compelling, if circumstantial, evidence
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of belief in the law of small numbers.

4 Two-sample Permutation Tests

Consider again the setting of Example 2.2. That is, assume X1, . . . , Xm are i.i.d. P and, independently,

Y1, . . . , Yn are i.i.d. Q. For example, one group may be considered a treatment group, and the other a

control group. In many cases, researchers may be interested in testing whether P = Q, or perhaps just

θ(P ) = θ(Q), where θ(P ) could be the mean of P , a quantile of P , or any other parameter or functional.

See Bertanha and Chung (2023) for a treatment of two-sample permutation tests of differences between

functionals estimable at nonparametric rates.

4.1 Large-Sample Behavior

For testing equality of distributions P = Q, permutation tests achieve exact Type 1 error control, as the

randomization hypothesis holds. For example, one could base a test on the two-sample Kolmogorov-Smirnov

statistic, or some generalization, such as comparing empirical probabilities over a Vapnik-Cervonenkis class,

as in Romano (1990). Such an omnibus test would have exact Type 1 error control, and would be consistent

in power against any distributions P and Q with P 6= Q. For testing equality of means, the difference in

sample means would be a more appropriate test statistic. In this case, as we will see, permutation tests may

still fail to control the Type 1 error rate, even asymptotically.

Assume that estimators θ̂m and θ̂n of θ(P ) and θ(Q) are asymptotically linear in the sense that

m1/2(θ̂m − θ(P )) =
1√
m

m∑
i=1

ψP (Xi) + oP (1) ,

for some function ψP (·), where EPψP (Xi) = 0 and 0 < σ2(P ) = VarP (ψP (Xi)) < ∞. Consider the test

statistic5

Tm,n = m1/2(θ̂m(X1, . . . , Xm)− θ̂n(Y1, . . . , Yn)) . (20)

In general, the permutation distribution fails to recover the true null sampling distribution, as seen in the

following theorem, stated as Theorem 2.1 in Chung and Romano (2013). The proof follows by verifying

Hoeffding’s Condition.

Theorem 4.1. Assume X1, . . . , Xm are i.i.d. P and, independently, Y1, . . . , Yn are i.i.d. Q. Let m → ∞,

n→∞, with N = m+ n, pm = m/N and pm → p ∈ (0, 1) with pm − p = O(m−1/2) . Let P̄ be the mixture

distribution: P̂ = pP + (1 − p)Q. Consider testing the null hypothesis H0 : θ(P ) = θ(Q) based on a test

5Note that the factor m1/2 plays no role, as the permutation test with or without such a constant factor results in the same
p-value; it is only used to ensure that the permutation distribution has a non-degenerate limit distribution.
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statistic (20) where the estimator θ̂n is assumed to be asymptotically linear under P , Q and P̄ . Then, the

permutation distribution R̂m,n(·) based on Tm,n satisfies

sup
t
|R̂m,n(t)− Φ(t/τ(P̄ ))| P→ 0 , (21)

where τ2(P̄ ) = p(1− p)−1σ2(P ) + σ2(Q).

By the central limit theorem, the true unconditional sampling distribution of Tm,n satisfies

Tm,n ≈ N
(
0, σ2(P ) + p(1− p)−1σ2(Q)

)
. (22)

By contrast, Theorem 4.1 demonstrates that the permutation distribution satisfies

R̂m,n ≈ N
(
0, p(1− p)−1σ2(P ) + σ2(Q)

)
. (23)

Thus, the permutation distribution is asymptotically different than the true sampling distribution, unless

asymptotic variances are equal. Consequently, the critical value from the permutation distribution may be

inconsistent and permutation tests based on Tm,n may yield a rejection probability arbitrarily close to 1.

Consider, for example, testing equality of medians based on the difference of sample medians. If both

groups have median θ, the true asymptotic variance of the normalized difference is

1

4f2P (θ)
+

p

1− p
1

4f2Q(θ)
,

where fP (θ) and fQ(θ) denote the densities of the distributions P and Q evaluated at θ. By contrast, the

asymptotic variance of the permutation distribution is

1

1− p
σ2(P̄ ) =

1

1− p
1

4(pfP (θ) + (1− p)fQ(θ))2
.

These match if and only if fP (θ) = fQ(θ), which clearly need not hold.

4.2 Inconsistent Error Control

The incongruity between the unconditional sampling distribution (22) and the permutation distribution (23)

has a severe adverse effect on error control. To see this, consider testing the null hypothesis H0 of equality

of means against two-sided alternatives, based on the test statistic |X̄m− Ȳn|. Suppose that the distribution

Q has a much smaller variance than the distribution P and the proportion of the total observations sampled

from Q, i.e., pm is small. In this case, the variance of the unconditional sampling distribution (22) is larger

than the variance of the permutation distribution (23), and so the permutation test will over reject, under

the null. As the ratio of the variances of Q and P converges to zero, the rejection rate converges to one.
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Similarly, suppose that the mean of Q, θ(Q), is slightly bigger than the mean of P , θ(P ). In this case,

the probability of the event that the null hypothesis H0 is rejected and X̄m > Ȳn is nearly one half, where we

recall that Xi and Yi are samples from P and Q, respectively. That is, the null hypothesis H0 is rejected on

the basis of evidence X̄m > Ȳn contradictory to the truth θ(Q) > θ(P ). This is referred to as a directional,

or Type III, error (Mosteller, 1948).6

As will be seen shortly, the problem of mismatched asymptotic variances can be fixed. But first, we

provide some intuition. Recall that when P = Q, the permutation distribution should reflect the true

sampling distribution, as mentioned in Remark 3.1. So, asymptotically, the permutation distribution should

settle down to the true unconditional distribution of the statistic Tm,n, at least when P = Q. Now, the

permutation distribution is invariant with respect to ordering of the data. Thus, even when P 6= Q, the

data should behave similarly to the situation when all N = m + n observations are i.i.d. from the mixture

distribution P̄ = pP + (1 − p)Q, where p = m
N . Therefore, the behavior of the permutation distribution

under (P,Q) should be approximately the same as under (P̄ , P̄ ).7

Let Jm,n(P,Q) be the distribution of the test statistic sequence Tm,n when m i.i.d. observations are

sampled from P and n i.i.d. observations are samples from Q. By the argument above, the permutation

distribution R̂n,m under P = Q should satisfy

R̂m,n ≈ Jm,n(P̄ , P̄ )
d→ J(P̄ , P̄ ) = J(P,Q) , (24)

where J(P,Q) is the limiting distribution of Tm,n under (P,Q) and may depend on p = limm/N . When

J(P,Q) does not equal J(P̄ , P̄ ), the permutation distribution will be inconsistent.

This suggests a solution. As the problem occurs when J(P,Q) 6= J(P̄ , Q̄), consistency should result if an

asymptotically pivotal test statistic is chosen. That is, the problem is resolved if J(P,Q) is the same for all

(P,Q). To summarize, if, when the null hypothesis H0 is true, the true sampling distribution Jm,n(P,Q) of

the test statistic Tm,n under (P,Q) is asymptotically pivotal, then

Jm,n(P,Q) ≈ Jm,n(P̄ , P̄ ) ≈ R̂m,n, (25)

when sampling from either (P̄ , P̄ ) or (P, Q̄).

6Errors of this form are dangerous, because, inevitably, a rejection of H0 would be accompanied by a statement that the
difference in means is positive. Indeed, one can view directional errors as even more serious than Type 1 errors. Tukey (1991)
writes “Statisticians classically asked the wrong question–and were willing to answer with a lie, one that was often a downright
lie. They asked ‘Are the effects of A and B different?’ and they were willing to answer ‘no’. All we know about the world
teaches us that the effects of A and B are always different – in some decimal place – for any A and B. Thus asking ‘Are the
effects different?’ is foolish. What we should be answering first is ‘Can we tell the direction in which the effects of A differ from
the effects of B?.” Technically, lack of Type 1 error control implies lack of Type 3 error control, and it is important to control
both. Similarly, low power, or high Type 2 error, can result without proper choice of test statistic.

7This is not a formal argument. The result does hold under the assumptions in Theorem 4.1, but must be verified by
technical arguments.
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4.3 Studentization

A simple way to achieve asymptotic pivotality is to appropriately studentize the test statistic. Suppose that

σ̂2
m(X1, . . . , Xm) is estimator of the variance σ2(P ) = VarP (ψP (Xi)). Let

Sm,n(Z(N)) =
Tm,n√

N
mσ

2
m(X1, . . . , Xm) + N

n σ
2
n(Y1, . . . , Yn)

(26)

denote the studentized test statistic. The permutation distribution of the statistic Sm,n is

R̂Sm,n(t) =
1

N !

∑
π∈GN

I{Sm,n(Zπ(1), . . . , Zπ(N)) ≤ t} , (27)

where GN denotes the N ! permutations of {1, . . . , N}.

The studentized permutation test is just as easy to implement as an unstudentized test. Its asymptotic

validity is established by the following theorem, stated as Theorem 2.2 in Chung and Romano (2013).

Theorem 4.2. Assume the setup and conditions of Theorem 4.1. Suppose that σ̂m(X1, . . . , Xm) is a con-

sistent estimator of σ(P ) when X1, . . . , Xm are i.i.d. P . Assume consistency also under Q and P̄ . The

permutation distribution (27) based on the statistic (26) satisfies

sup
t
|R̂Sm,n(t)− Φ(t)| P→ 0 .

To summarize, asymptotically, the permutation distribution of the studentized statistic now behaves like the

true unconditional distribution of the studentized statistic. The permutation test based on a studentized

statistic is asymptotically valid for testing θ(P ) = θ(Q) and retains exact Type 1 error control when P = Q.

The technical conditions are very weak and do not require strong differentiability assumptions. Under such

conditions, the bootstrap may not even be first order asymptotically correct. See Yadlowsky et al. (2021)

and Ritzwoller and Syrgkanis (2024) for further applications that leverage this generality.

To get a quantitative view of the difference between randomization tests implemented with and without

studentized test statistics, we conduct a calibrated experiment. We obtain measurements of the log earnings

of 50,742 fully employed individuals from the March 2009 Current Population Survey (CPS).8 We consider

two settings. In both settings, for the purposes of the experiment, we normalize the measured log earnings

from 29,140 men and 21,602 women so that both have means equal to zero.9 In the first setting, we use these

normalized distributions as the population distributions P and Q, respectively. In this case, the variance of

log earnings for men (0.531) is larger than for women (0.392). In the second setting, we reduce the variance

of the log earnings for the female population by a factor of 1/3, i.e., we multiply these data by 1/
√

3

Consider a sample of N = 100 measurements of log earnings from the CPS data. Here, m = p ·N of the

8These data were downloaded from Bruce Hansen’s website: https://users.ssc.wisc.edu/~bhansen/econometrics/.
9The average measured log earnings for men and women in the sample are 10.8 and 10.5, respectively.
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Figure 2: Stable Error Control with Studentization
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Notes: Figure 2 displays the results of a calibrated experiment. The experiment is implemented using measurements of the
log earnings for populations of men and women from the March 2009 Current Population Survey (CPS). See the main text for
further information on the design of the experiment. Each measurement is made using 2,000 samples of N = 100 observations
from the CPS, where we vary the proportion p of men in the sample. Randomization tests are implemented using 10,000
permutations.

observations are from men. We are interested in testing the null hypothesis that the average log earnings of

men and women are equal. As we have normalized the two populations P and Q to both have means equal to

zero, the null hypothesis is true. Figure 2 displays measurements of the rejection rates of the randomization

tests using the studentized and unstudentized difference in means, where we vary the proportion p of men in

the sample. In both settings, the randomization test that uses the unstudentized test statistic over-rejects.

This over-rejection is more severe in the setting where the variance of the measurements of female log earnings

has been scaled to be smaller than the variance of male log earnings. On the other hand, in both settings,

the rejection rate for the randomization test using the studentized statistic is approximately correct.

4.4 Generalizations

The intuition for the results for the two-sample problem apply quite generally. We will touch upon four

possibilities: (i) higher-order kernel U -statistics, (ii) multiple samples, (iii) multivariate observations, and

(iv) multiple testing.
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4.4.1 U-statistics

Rather than basing a two-sample test on a statistic that is a difference of estimators, one can consider the

class of two-sample U -statistics of the form:

Um,n(Z) =
1(

m
r

)(
n
r

) ∑
α

∑
β

ϕ(Xα1 , . . . , Xαr , Yβ1 , . . . , Yβr ) . (28)

Notably, this includes the popular two-sample Wilcoxon statistic (or equivalently, the Mann-Whitney statis-

tic), given by

Wm,n =
1

mn

m∑
i=1

n∑
j=1

I(Xi ≤ Yj) . (29)

one could tabulate its null distribution for given sample sizes m and n. Since Wm,n is a rank statistic, if

there are no ties among the observations, then the permutation distribution can be tabled as it no longer

depends on the data at all; that is,

Similar to a test based on differences in sample means, the Wilcoxon test is exact for testing P = Q.

Note, however Wm,n is unbiased for

θ(P,Q) ≡ EP,QI{Xi ≤ Yj} = P{Xi ≤ Yj} ,

and any inference about θ(P,Q) is invalid based on the permutation test using the test statistic Wm,n.

Following rejection of such a permutation, in order to claim θ(P,Q) > 1/2 (or < 1/2), the intuition provided

earlier applies. Therefore, if one studentizes appropriately, then asymptotic validity follows. In particular,

define the statistic

W̃m,n =
Wm,n − 1

2√
N
m ξ̂x + N

n ξ̂y

, (30)

where

ξ̂x =
1

m− 1

m∑
i=1

(
1

n
(Sxi − i)−

1

mn

m∑
i=1

(Si − i)

)2

, ξ̂y =
1

n− 1

n∑
j=1

 1

m
(Syj − j)−

1

mn

m∑
j=1

(Syj − j)

2

,

and Sxi and Syj are the ranks of Xi and Yj in the combined sample, respectively. That is, W̃m,n is a

rank statistic and so it retains all the benefits of the usual two-sample Wilcoxon test as a rank test. The

permutation test based on W̃m,n is exact under P = Q and is asymptotically valid for tests of the parameter

θ(P,Q) = 1/2. The test has the same high (Pitman) asymptotic relative efficiencies compared to the t-test,

even under normality, but it is robust against non-normality. See Chung and Romano (2016b), Berrett et al.

(2020), and Kim et al. (2022) for further consideration of two-sample permutation tests based on U -statistics.
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4.4.2 Multiple Samples

Two-sample testing generalizes to the analysis of variance. Consider observations from k samples, with

underlying distributions P1, . . . , Pk. For testing

H0 : θ(P1) = · · · = θ(Pk)

against the alternative

H1 : θ(Pi) 6= θ(Pj) for some i, j .

For testing many means, the problem can be viewed as a nonparametric generalized Behrens-Fisher problem

(Janssen, 1997). As before, without an appropriate choice of test statistic, permutation tests can be invalid

for making inferences (such as directional claims) regarding parameters. But the same intuition suggests

that, at least asymptotically, one should base a test on an asymptotically distribution-free or pivotal test

statistic. To this end, let

Tn =

k∑
i=1

ni
σ̂2
n,i

(
θ̂n,i −

∑k
i=1 niθ̂n,i/σ̂

2
n,i∑k

i=1 ni/σ̂
2
n,i

)2

,

where σ̂n,i ≡ σ̂n,i(Xi,1, . . . , Xi,ni) is a consistent estimator of σi = σi(fPi). Under finite second moments,

under H0, Tn converges in distribution to the Chi-squared distribution with k − 1 degrees of freedom, and

hence is asymptotically pivotal. It follows that the permutation test based on Tn asymptotically controls

the Type 1 rejection probability when H0 is true, while still retaining its exactness when P1 = · · · = Pk. For

details, see Chung and Romano (2013).

4.4.3 Multivariate Permutation Test

The same ideas extend to vector-valued observations as well. Suppose X1, . . . , Xm are d-dimensional i.i.d.

P with mean vector (µ1(P ), . . . , µd(P )) and covariance matrix ΣP , and independently, Y1, . . . , Yn are d-

dimensional i.i.d. Q with mean vector(µ1(Q), . . . , µd(Q)) and covariance ΣQ. Consider testing

H0 : µk(P ) = µk(Q) for all k ∈ [d] against H1 : µk(P ) 6= µk(Q) for some k ∈ [d] , (31)

based on the test statistic

Tm,n = (Tm,n,1, . . . , Tm,n,d) = N1/2

 1

m

m∑
i=1

Xi −
1

n

n∑
j=1

Yj

 (32)

Since Tm,n is not asymptotically pivotal, permutation tests may be invalid. However, we may consider a

modified Hotelling’s T 2 statistic, defined by

Sm,n = ||Σ̂−1/2Tm,n||2 = T ′m,nΣ̂−1Tm,n , (33)
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where Σ̂ = 1
p Σ̂P + 1

1−p Σ̂Q , for some estimators satisfying Σ̂P
P→ ΣP , Σ̂Q

P→ ΣQ, and || · || denotes the usual

Euclidean norm. In this case, one can show that

sup
t
|R̂Sm,n(t)− χ2

d(t)|
P→ 0 , (34)

where RSm,n(t) is the permutation distribution based on Sm,n. That is, again, as Sm,n is asymptotically piv-

otal, permutation tests are asymptotically valid for testing H0 and remain exact when P = Q. Alternatively,

a permutation test can be based on the maximum difference between the two vectors of means. In that case,

an asymptotically pivotal test statistic can be achieved using a “bootstrap after permuting” algorithm; see

Chung and Romano (2016a).

4.4.4 A Hint at Multiple Testing

Since p-values of individual hypotheses may be constructed using randomization tests, any method that

combines p-values may be considered to test multiple hypotheses (such as Holm (1979) or Benjamini and

Yekutieli (2001)). Alternatively, one may use the previous tests of multivariate parameters in conjunction

with the closure method to derive tests of multiple hypotheses (Romano et al., 2011). Such tests control

the familywise error rate (FWER), and implicitly account for the dependence among the test statistics (and

hence offer greater power than Bonferroni/Holm type methods). Moreover, they control FWER exactly in

finite samples (when the randomization hypothesis holds) and have asymptotic validity otherwise.

5 Experiments

The analysis of experimental data (or data from randomized controlled trials) is particularly well-suited to

randomization inference. To see why, consider an experiment in which units are first sampled i.i.d. from

some distribution P . Such a sampling scheme is sometimes referred to in the literature on experiments as

sampling from a “superpopulation” in an effort to distinguish it from alternative “finite population” sampling

schemes; see below for some discussion on the relationship between these different sampling schemes. For

each unit i, denote by Yi(1) the potential outcome under treatment, by Yi(0) the potential outcome under

control, and by Zi observed, baseline covariates. Further denote by Di the treatment status of the ith unit.

For each unit i, the observed data is denoted by Xi = (Yi, Di, Zi), where the observed outcome Yi satisfies

Yi = Yi(1)Di + Yi(0)(1−Di) . (35)

In what follows, for a generic random variable indexed by i, Wi, it will be convenient to let W (n) =

(W1, . . . ,Wn). Using this notation, we will make the following assumption on the treatment assignment rule

(Y (n)(1), Y (n)(0)) ⊥⊥ D(n)|Z(n) . (36)
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In words, such an assumption requires that the (joint) distribution of treatment status only depends on the

observed, baseline covariates. In practice, this distribution is known to the researcher in the context of an

experiment.

Before proceeding, we describe some common treatment assignment rules. Perhaps the simplest example

of such a rule is what is referred to sometimes as simple random sampling, in which D(n) ⊥⊥ Z(n) and Di, i =

1, . . . , n are i.i.d. ∼ Bernoulli(q) for some known 0 < q < 1. Another common treatment assignment rule is

what is known as complete randomization in which again D(n) ⊥⊥ Z(n) and D(n) is uniformly distributed

over vectors d(n) = (d1, . . . , dn) in which each di ∈ {0, 1} and
∑

1≤i≤n di = m for some known 0 < m < n.

A somewhat more complicated treatment assignment scheme is stratified block randomization. As the name

suggests, in this treatment assignment scheme units are first divided into s strata according to Si = S(Zi),

where S : supp(Zi)→ {1, . . . , s}, and then, within each stratum (and independently across strata), units are

assigned to treatment according to complete randomization with m ≈ q×n(s), where n(s) =
∑

1≤i≤n I{Si =

s}. Finally, a fourth treatment assignment scheme that is often employed is what is known as matched pair

designs. In such designs, units are first paired according to observed, baseline covariates, and then, within

each pair, one unit is assigned to treatment and the other to control with equal probability.

5.1 Testing “Strong” Null Hypotheses

For any of the randomization schemes described above, it is possible to devise a randomization test that is

exact for the following null hypothesis:

H0 : Yi(1)|Zi
d
= Yi(0)|Zi . (37)

This null hypothesis may be viewed as positing a “strong” sense in which the treatment has no effect on the

outcome of interest.

To describe this test, note that for any of the four randomization schemes described above, there exists

a group GZ(n) that preserves the distribution of treatment status in the sense that

gD(n)|Z(n) d
= D(n)|Z(n) for any g ∈ GZ(n) . (38)

For concreteness, we briefly describe these transformations for each of the treatment assignment schemes

above. In the context of simple random sampling and complete randomization, one possible choice of

GZ(n) is simply Gn, the set of all permutations of n elements, and gD(n) is defined for any g ∈ Gn to be

(Dg(1), . . . , Dg(n)). In the context of stratified block randomization, a natural choice of GZ(n) is the subgroup

of Gn that only permutes units within a common stratum, i.e.,

GS(n) = {g ∈ Gn : Sg(i) = Si for all 1 ≤ i ≤ n} ,
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and gD(n) is defined in the same way as before. Finally, in the context of matched pair designs, essentially

the same idea applies with the strata being understood as the pairs. In order to describe the group more

formally, we require some further notation. For convenience, suppose n is even, i.e., n = 2k for some integer

k. For such n, we may denote the k pairs by (π(2j−1), π(2j)), j = 1, . . . , k, where π = πZ(n)) is a permutation

of n elements (that, importantly, may depend on Z(n)). Using this notation, the natural choice of GZ(n) is

the subgroup of Gn that only permutes units within a pair, i.e.,

GZ(n) = {g ∈ Gn : {g(π(2j − 1)), g(π(2j))} = {π(2j − 1), π(2j)} for all 1 ≤ j ≤ p} ,

and gD(n) is again defined in the same way as before.

We now argue that under (37), the distribution of the observed data X(n) is invariant with respect to

the transformations in GZ(n) satisfying (38) in the sense that

gX(n) d
= X(n) , (39)

where gX(n) = (Y (n), gD(n), Z(n)). In order to establish this equality in distribution, we argue that Y (n) ⊥⊥

D(n)|Z(n). To see this, let A(n) =
∏

1≤i≤nAi for arbitrary intervals Ai and Y (n)(d(n)) = (Y1(d1), . . . , Yn(dn)).

With this notation in mind, note that

P{Y (n) ∈ A(n)|D(n) = d(n), Z(n)} = P{Y (n)(d(n)) ∈ A(n)|D(n) = d(n), Z(n)}

= P{Y1(d1) ∈ A1, . . . ,∈ Yn(dn) ∈ An|D(n) = d(n), Z(n)}

= P{Y1(d1) ∈ A1, . . . ,∈ Yn(dn) ∈ An|Z(n)}

=
∏

1≤i≤n

P{Yi(di) ∈ Ai|Zi} ,

where the first equality exploits (35), the second exploits the definitions of A(n) and Y (n)(d(n)) given above,

the third equality exploits (36), and the final equality exploits i.i.d. sampling. Under (37), we see that this

final quantity does not depend on d(n), from which the desired conditional independence property follows.

We now have immediately that (38) implies gX(n)|Z(n) d
= X(n)|Z(n) under (37), from which the desired

unconditional equality in distribution in (39) follows as well.

The test is now constructed in the usual way. For any test statistic Tn = Tn(X(n)) such that large values

provide evidence against Tn, we can construct a suitable critical value with which to compare it as r̂−1n (1−α),

defined in (8), where

R̂n(t) =
1

|GZ(n) |
∑

g∈G
Z(n)

I{Tn(gX(n)) ≤ t} .

Having established (39), it is now straightforward to modify the proof of Theorem 2.1 to show that the test

that rejects H0 whenever Tn exceeds T
(k)
n (X(n)) is level α in finite samples.

Remark 5.1. The development above presumes that there are no spillovers in the sense that potential
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outcomes for unit i are only indexed by the treatment status of unit i. When this is not the case, potential

outcomes are now indexed by a vector-valued argument that specifies the treatment of each unit. Random-

ization inference may be used essentially verbatim to test a suitably modified version of the “strong” null

hypothesis that asserts that the (conditional) distribution of each potential outcome is invariant with respect

to this argument. More interestingly, however, by restricting attention to suitable subsets of the data, it

is possible to test somewhat less restrictive null hypotheses. For a development of such an idea in a finite

population context, see Basse et al. (2019) and Puelz et al. (2022). See also Athey et al. (2018), Li et al.

(2019), Xu and Basse (2021), and Basse et al. (2024) for further consideration randomization inference for

problems incorporating spillovers and interference.

Remark 5.2. Even if it is not possible to exhibit a group satisfying (38), it is possible to construct tests

of the null hypothesis in (37) by exploiting knowledge of the distribution of D(n)|Z(n) and the logic of

Remark 2.1. To see this, for b = 2, . . . , B, let D(n),b, b = 2, . . . , B be i.i.d. ∼ D(n)|Z(n) and define X(n),b =

(Y (n), D(n),b, Z(n)) let X(n),1 = X(n). It is straightforward to argue that {Tn(X(n),b) : 1 ≤ b ≤ B} is

exchangeable under null hypothesis in (37). The rest of the argument in Remark 2.1 now applies verbatim

and we can employ the same construction to yield a test that is level α in finite samples for testing the null

hypothesis in (37).

5.2 Testing “Weak” Null Hypotheses

We are, of course, often not interested in testing the null hypothesis in (37), but rather the null hypothesis

H0 : E[Yi(1)− Yi(0)] = 0 . (40)

Such null hypotheses are sometimes referred to as “weak” null hypotheses to distinguish them from the

“strong” null hypotheses considered in the preceding section; see e.g., Chung (2017) for further discussion.

For such a null hypothesis, it is natural to consider tests that reject for large values of |tn|, where Tn(X(n)) =
√
n(µ̂n(1) − µ̂n(0)), µ̂n(d) = 1

nd

∑n
i=1 I{Di = d}Yi, and nd =

∑n
i=1 I{Di = d}. In order to describe the

large-sample behavior of Tn(X(n)), it is useful to specialize to a specific treatment assignment rule. Below we

focus on matched pair designs, following the treatment in Bai et al. (2022). For some results related to other

treatment assignment schemes, especially stratified block randomization, see Bugni et al. (2018, 2019). For

further consideration of tests of weak null hypotheses in randomized experiments, see Wu and Ding (2021),

Zhao and Ding (2021), and Heckman et al. (2024).

Under weak assumptions, Bai et al. (2022) establish that Tn
d→ N(0, V ), where

V = E[Var[Yi(1)|Zi]] + E[Var[Yi(0)|Zi]] +
1

2
E
[
(E[Yi(1)|Zi]− E[Yi(0)|Zi])2

]
.

The main requirements underlying this result are that pairs are constructed so that units within a pair are
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suitably close in terms of their observed, baseline covariates, specifically

1

n

∑
1≤j≤p

|Zπ(2j) − Zπ(2j−1)|
P→ 0 , (41)

and that E[Yi(d)|Zi] is sufficiently well behaved. Bai et al. (2022) provide algorithms that ensure (41)

satisfied; in particular, it suffices to choose π to minimize the lefthand-side of (41) under mild moment

restrictions. Bai et al. (2022) assume that E[Yi(d)|Zi] is Lipschitz, but it is enough to assume it is simply

integrable by suitably approximating integrable functions with Lipschitz functions; see Cytrynbaum (2023)

for such an argument assuming E[Yi(d)|Zi] is square integrable.

By contrast, the randomization distribution of Tn(X(n)) is simply the distribution

1√
n

∑
1≤j≤p

εj(Yπ(2j) − Yπ(2j−1)) ,

conditional on X(n), where εj , j = 1, . . . , n are i.i.d. Rademacher random variables, i.e., taking on values ±1

with equal probability each. Bai et al. (2022) show that

R̂n(t)
P→ Φ(t/τ) ,

where

τ2 = E[Var[Yi(1)|Zi]] + E[Var[Yi(0)|Zi]] + E
[
(E[Yi(1)|Zi]− E[Yi(0)|Zi])2

]
.

Since τ2 ≥ V , it follows that the randomization test of the null hypothesis in (40) based on tn(X(n)) is

generally conservative. Bai et al. (2022) show that qualitatively similar results hold for the usual two-sample

t-test and the paired t-test.

As in the preceding sections, however, it is possible to restore asymptotic exactness of the randomization

test by applying it to an appropriately Studentized version of Tn(X(n)). As a first step towards this, Bai et al.

(2022) develop a consistent estimator of V . A key challenge in doing so is the estimation of quantities like

E[E[Yi(1)|Zi]2] because the natural estimator of this quantity would involve two independent observations

of Yi(1) conditional on Zi and, by construction, only one such observation is available. Bai et al. (2022)

show, however, that it is possible to estimate such quantities under a suitable strengthening of (41) that

ensures that units in adjacent pairs are also close in terms of their observed, baseline covariates. If we denote

by V̂n the resulting estimator of V , then Bai et al. (2022) show that the randomization test of the “weak”

null hypothesis in (40) with Sn(X(n)) = |Tn(X(n))|/
√
V̂n is asymptotically exact, while remaining level α in

finite samples for the “strong” null hypothesis in (37).

Remark 5.3. In the preceding discussion, we have focused on testing (40), but it is straightforward to
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modify the procedure so as to test the null hypothesis that specifies instead

E[Yi(1)− Yi(0)] = θ0 (42)

for some pre-specified value θ0 that need not equal zero. To do so, we can simply “pre-process” the data by

replacing Yi with Yi−θ0Di. The data transformed in this way now satisfies (40) whenever the null hypothesis

of interest (42) holds. In this way, using test inversion, it is possible to construct confidence intervals for

E[Yi(1)− Yi(0)].

Remark 5.4. As mentioned above, our discussion has focused on a “superpopulation” sampling framework.

An alternative sampling framework is sampling from a “finite population.” In such a framework, n units are

sampled without replacement from a finite population of N units defined by {(yi(1), yi(0), zi) : 1 ≤ i ≤ N}.

The situation in which n = N is sometimes referred to as a “design-based” setting because the only remaining

source of uncertainty is from the design, by which this literature means the way in which treatment status

was assigned, but the framework permits n < N as well. In such settings, the randomization test described

in Section 5.1 is level α in finite samples for testing the following counterpart to the “strong” null hypothesis

in (37):

H0 : yi(1) = yi(0) for all 1 ≤ i ≤ N .

This null hypothesis is sometimes referred to as “sharp” because it permits one to impute the observed data

for any possible value of D(n). In a finite population, the corresponding counterpart to the “weak” null

hypothesis in (40) is

H0 :
1

N

∑
1≤i≤N

(yi(1)− yi(0)) = 0 . (43)

Randomization tests may again be used to test the null hypothesis in (43) as well, but there are some subtle

differences in the analysis. A key feature is that generally these tests will not be exact even asymptotically.

This phenomenon stems from the limiting behavior of quantities like Tn(X(n)) when sampling from a finite

population. In particular, their limits in distribution may involve features of {yi(1) − yi(0) : 1 ≤ i ≤ N}

that are not consistently estimable using the data from the experiment. This feature typically remains

present unless n/N → 0. See, e.g., Lehmann and Romano (2022) for an analysis under the assumption that

treatment is assigned using complete randomization. For further discussion of the relationship between these

two sampling schemes, we additionally refer the reader to Imbens and Rubin (2015), Abadie et al. (2020),

Bai et al. (2024b), and the references therein.

Remark 5.5. Throughout this section, we have restricted attention to experiments with a single treatment

and a control. Many of the ideas generalize naturally to settings in which there are multiple treatments. See

Bugni et al. (2019), Bai et al. (2024a), and Bai et al. (2024b). The latter reference surveys a number of topics

in the broader literature on the analysis of experiments that are omitted from our discussion, including the

broader benefits of stratification in terms of reducing ex post bias of estimators, cluster-level randomized

experiments, and regression adjustment in experiments.
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6 Correlation and Regression

We now consider tests concerning correlation and regression. Here, randomization tests will be exact for null

hypotheses involving independence restrictions. Asymptotic correctness for tests of correlation, or for tests

involving regression coefficients, can be obtained with appropriate choices of test statistic.

6.1 Correlation

Assume (X1, Y1) , . . . , (Xn, Yn) are i.i.d. according to a joint distribution P with (non-degenerate) marginal

distributions PX and PY . Define X(n) = (X1, ..., Xn) and Y (n) = (Y1, ..., Yn). Consider the problem of

testing the null hypothesis of independence, given by

H0 : P = PX × PY . (44)

Define Gn to be the set of all permutations π of {1, ..., n}. As before, the permutation distribution of any

given test statistic Tn
(
X(n), Y (n)

)
is given by

R̂n(t) =
1

n!

∑
π∈Gn

I
{
Tn(X(n), Y (n)

π ) ≤ t
}

Since the randomization hypothesis holds for testing H0, an exact permutation test can be constructed.

On the other hand, consider instead the null hypothesis

H0 : ρ(P ) = 0 , (45)

where ρ = ρ(P ) = corr(X1, Y1) denotes the correlation between X1 and Y1. The normalized sample correla-

tion
√
nρ̂n(X(n), Y (n)) =

√
n
∑n
i=1XiYi − nX̄nȲn√∑n

i=1(Xi − X̄n)2
∑n
i=1(Yi − Ȳn)2

.

is a natural choice of test statistic. If rejection of the null hypothesis H0 is accompanied by the claim that ρ

is positive when ρ̂n is large and positive, then such claims can have large Type 3, or directional, error rates.

To see this, note that under H0, the observations Xi and Yi may be dependent, and the distribution of the

test statistic may not be the same under all permutations of the data. That is, the randomization hypothesis

fails and the test is not guaranteed to be level α, even asymptotically.

Under the null hypothesis H0, if E(X1)2 < ∞, E(Y1)2 < ∞ and E(X1Y1)2 < ∞, then the sampling

distribution of
√
nρ̂n(Xn, Y n) is N(0, τ2(P )), where

τ2 = τ2(P ) =
µ2,2

µ2,0µ0,2
, for µr,s = E [(X1 − µX)r(Y1 − µY )s] , (46)
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and µX and µY are the means of the Xi and Yi, respectively. However, the permutation distribution is

asymptotically N(0, 1) (with probability one). As in the two-sample problems considered in Section 4, there

is a problem of mismatched asymptotic variances.

Before considering a fix, it is instructive to consider why the approximation permutation distribution

is standard normal. The intuition is as follows. Applying a permutation to one coordinate of the data

effectively destroys the dependence between pairs. Therefore, the behavior of the permutation distribution

under a general joint distribution P should not be too different from when observations are sampled from the

joint distribution P̃ where X and Y are independent, but with the same marginal distributions as P ; that

is, P̃ = PX × PY . In such case, the randomization hypothesis holds, and using the intuition from Remark

3.1, the permutation distribution should be approximately the limiting distribution of the unconditional

distribution under P̃ , in which case the limiting approximation is, by (46), V (P̃ ) = 1. On the other hand,

if Xi and Yi are uncorrelated with joint distribution P (that is not necessarily independent), then

0 ≤ V (P ) ≡
E
[
(Xi − µX)2(Yi − µY )2

]
σ2
Xσ

2
Y

≤ ∞

and these bounds can be attained in the sense that there exists a joint distribution of (X1, Y1) where

cov(X1, Y1) = 0, but this ratio is 0, and likewise for which it is ∞. Thus, the probability of a Type 1 error

can be near 1. Even more troubling, this discrepancy can lead to large Type 3 (directional) error rate if one

is interested in deciding the sign of the correlation based on the sample correlation.

To remedy these problems, the same intuition applies, and one should use a test statistic that is asymp-

totically pivotal. In this case, the test statistic can be studentized by

V̂n =

√
µ̂2,2

µ̂2,0µ̂0,2
where µ̂r,s =

1

n

n∑
i=1

(Xi − X̄n)r(Yi − Ȳn)s

are the sample central moments. The studentized correlation statistic defined by Sn =
√
nρ̂n/V̂n is asymp-

totically pivotal in the sense that it is asymptotically distribution free whenever the underlying distribution

satisfies H0. Because Sn is a pivotal statistic, the true sampling distribution of Sn under P has the same

asymptotic behavior as the true sampling distribution of Sn under PX × PY . When the randomization

hypothesis is satisfied, the permutation test using the statistic Sn is exact under PX×PY , and therefore, the

permutation distribution should asymptotically approximate the true sampling distribution under PX ×PY .

Formally, the following result from DiCiccio and Romano (2017) holds.

Theorem 6.1. Assume (X1, Y1) , ..., (Xn, Yn) are i.i.d. according to P such that X1 and Y1 are uncorre-

lated but not necessarily independent. Also assume that E(X4
1 ) < ∞ and E(Y 4

1 ) < ∞. The permutation

distribution R̂Snn (t) of Sn =
√
nρ̂n/τ̂n satisfies

lim
n→∞

sup
t∈R

∣∣∣R̂Snn (t)− Φ(t)
∣∣∣ = 0
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almost surely.

Consequently, if
√
nρ̂n is studentized by V̂n, then the quantiles of the permutation distribution and the

true sampling distribution converge almsot surely to the corresponding quantiles of the standard normal

distribution. The permutation test using the studentized statistic is appealing because it retains the exactness

property under PX × PY but is also asymptotically level α under P .

6.2 Regression

Many of the same ideas generalize to consideration of a coefficient in a linear regression. Consider i.i.d.

(Xi, Yi) pairs following a simple univariate linear regression model

Yi = α+ βXi + εi, i = 1, ..., n ,

where Xi ∈ R and εi are errors with mean zero and variance σ2. (For the moment, assumptions on the joint

distribution of Xi and εi are not specified, but will be described below). To test the hypothesis

H0 : β = 0,

it is natural to base a test on the sample correlation ρ̂n or the least squares estimator β̂n. If the Xi’s are

independent of the εi’s (and therefore independent of the Yi’s under H0 : β = 0), then an exact permutation

test can be performed by permuting the Xi’s. A permutation test may not be exact if the predictors and

errors are uncorrelated (but dependent), however, following the previous results, studentizing the correlation

coefficient leads to an asymptotically level α test.

Permutation tests have been considered in more complex regression problems. Of course, multiple re-

gression can be considered, as well as sub-vector inference (D’Haultfœuille and Tuvaandorj, 2024) and ac-

commodation of heteroskedasticity. Freedman and Lane (1980) permute residuals after model fitting. This

approach need not provide error control, but DiCiccio and Romano (2017) provide a modification that does.

One may also base a randomization test based on sign changes of residuals (under symmetry of errors), which

is closely related to wild bootstrap. An empirical investigation of such techniques, in the high-dimensional

case, is given in Hemerik et al. (2020). Lei and Bickel (2021) propose a method for exact inference under

exchangeable errors and give excellent review of related literature. See also Guo and Toulis (2023), Young

(2023), Young (2024), and Pouliot (2024) for several recent contributions to this subject.

7 Permutation Tests in Time Series

Assume X1, . . . , Xn are observed from a time series. Of course, many parametric testing methods exist for

testing the structure of the underlying stochastic process, but the assumptions for these tests are restrictive
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and the null hypothesis is often incorrectly specified. However, nonparametric inferential tools for certain

structural features can be based on randomization tests. Such features include the presence (or not) of

autocorrelation and trend.

7.1 Testing Time Series Structure

Assume data X1, . . . , Xn comes from a strictly stationary (weakly dependent) time series. A basic question

is: Are the observations independent? (In a time series setting, this may seem clearly not true; however,

tests of fit of many time series models are often based on residuals that are hopefully independent, at

least approximately.) A frequently-used analogue for testing independence is the related question: Do the

observations have zero autocorrelation? Let Hr be the null hypothesis Hr : ρ(1) = · · · = ρ(r) = 0, where

ρ(k) is the k-th order autocorrelation. Such a problem may arise, for example, in testing the efficient market

hypothesis in finance; see e.g., Fama (1970).

Examples of tests of Hr include the Ljung-Box test and the Box-Pierce test. These tests often make

parametric assumptions on the sequence X1, . . . , Xn. As such, the tests are, in general, not exact for finite

samples and may not be even asymptotically valid for controlling Type 1 error.

Under the more stringent null hypothesis H̄ that X1, . . . , Xn are i.i.d., the randomization hypothesis

holds with respect to the permutation group. Therefore, one can construct exact finite-sample permutation

tests. We have encountered this setting in Section 3.3. Here, the null hypotheses H̄ and Hr are quite

different. Permutation tests based on sample autocorrelations accompanied by claims about the population

autocorrelation parameters can lead to issues with Type 1 error and Type 3 error control. This is the same

phenomenon discussed in Sections 4 and 6.

Despite this, permutations need not be abandoned. Our goal is to construct valid permutation tests of

the null hypothesis H(k) : ρ(k) = 0 that are exact under the i.i.d. assumption, and asymptotically valid for

a large class of weakly dependent sequences. To this end, let

ρ̂n(k) = ρ̂n (X1, . . . , Xn; k) =
1
n

∑n−k
i=1 (Xi − X̄n)(Xi+k − X̄n)

σ̂2
n

, (47)

where X̄n is the sample mean, and

σ̂2
n =

1

n

n∑
i=1

(Xi − X̄n)2

is the sample variance. For simplicity, let ρ̂n = ρ̂n(1) and ρ = ρ(1).

Before describing the behavior of the permutation distribution based on the test statistics
√
nρ̂n, we first

consider its usual limiting distribution. Assume that {Xn} is a stationary, α-mixing sequence, with mixing

coefficients αX(·) that satisfy, for some δ > 0,
∑
n≥1 αX(n)

δ
2+δ < ∞. Also, assume E

[
|X1|8+4δ

]
< ∞. By
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Ibragimov’s (1962) Central Limit Theorem,

√
n(ρ̂n − ρ)

d→ N
(
0, γ21

)
,

for some variance γ21 . To describe γ21 , let

κ2 = Var
(
X2

1

)
+ 2

∑
k≥2

Cov
(
X2

1 , X
2
k

)
,

τ21 = Var (X1X2) + 2
∑
k≥2

Cov(X1X2, XkXk+1) ,

ν1 = Cov
(
X1X2, X

2
1

)
+
∑
k≥2

Cov
(
X2

1 , XkXk+1

)
+
∑
k≥2

Cov
(
X1X2, X

2
k

)
, and

γ21 =
1

σ4

(
τ21 − 2ρ1ν1 + ρ21κ

2
)
.

Note that, while the expressions are messy, γ1 = 1 if the data are i.i.d.

How should we understand the permutation distribution in this setting? Since permuting randomly

changes the order of the observations, the behavior of the permutation distribution should be similar to the

situation when all observations are i.i.d. according to a distribution P1, where P1 is the marginal distribution

of each observation in the underlying stationary time series. But, in the i.i.d. situation, by Remark 3.1, the

permutation distribution should behave like the true unconditional distribution, which is N(0, γ21) with

γ1 = 1. Indeed, the permutation distribution of
√
nρ̂n satisfies

sup
t∈R
|R̂n(t)− Φ(t)| p→ 0 .

Therefore, permutation tests may be asymptotically invalid, due to the problem of mismatched variances:

the true limiting variance is γ21 while the permutation distribution has a variance approximately equal to

one. The solution again is to use an asymptotically pivotal statistic, which can be obtained by studentizing.

An appropriate studentized test statistic is presented in Romano and Tirlea (2022), accompanied by the

limiting behavior of the permutation test. Permutation tests have been extended to regression problems

with correlated errors in Romano and Tirlea (2024a).

7.2 Testing Trend

The definition of trend in a time series is somewhat nebulous and is discussed in detail in Romano and Tirlea

(2024b). Here, we illustrate a particular classical test of trend that uses the Mann-Kendall trend statistic

given by

Un =
3

n3/2

∑
i<j

(I{Xj > Xi} − I{Xj < Xi})
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For i.i.d. data, Un
d→ N(0, 1) as n→∞, and one can construct exact and asymptotically valid level α tests.

However, Type 1 error may not be controlled for stationary sequences that exhibit no trend. Once again,

studentization can be used to construct asymptotically valid tests, while remaining exact if the underlying

process is i.i.d.

8 Prediction and Conformal Inference

Permutation tests may, of course, be used to test a null hypothesis that implies exchangeability of the

observations. Such tests may then be used to construct prediction intervals (or prediction sets) for future

observations. Foundational work for conformal prediction can be found in Vovk et al. (2005). See, e.g., Lei

et al. (2018), Lei and Candès (2021), Barber et al. (2021b), Barber et al. (2021a), and Barber et al. (2023) for

further developments and applications. Cattaneo et al. (2021), Chernozhukov et al. (2021a), Chernozhukov

et al. (2021b) give applications of conformal inference to synthetic control (see also Abadie et al. (2010) and

Lei and Sudijono (2024) for alternative approaches closely related to randomization inference). We refer the

reader to Angelopoulos and Bates (2023) for a very nice review of the state of the art of conformal inference.

8.1 Prediction of an Exchangeable Sequence

In the simple case, assume (X1, . . . , Xn, Xn+1) is exchangeable, where the Xi take values in a space X .

It is desired to predict Xn+1 on the basis of having observed X1, . . . , Xn. A 100(1 − α)% prediction set

Ŝn = Ŝn(1− α,X1, . . . , Xn) is a random subset of X that satisfies

P{Xn+1 ∈ Ŝn} ≥ 1− α (48)

under all data generating mechanisms P (in an assumed model). A very general way to construct Ŝn(1−α)

is to first construct a set En+1 = En+1(X1, . . . , Xn+1) in Xn+1 that satisfies

P{(X1, . . . , Xn+1) ∈ En+1} ≥ 1− α . (49)

Then, one may construct Ŝn from En+1 by taking

Ŝn = {x : (X1, . . . , Xn, x) ∈ En+1} .

Since

{Xn+1 ∈ Ŝn} iff {(X1, . . . , Xn+1) ∈ En+1} ,

the coverage claim follows.

How can this prescription be applied by using a permutation test? In words, one may construct En+1 as
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the acceptance region of a level α test of the null hypothesis that (X1, . . . , Xn+1) is exchangeable. Since the

randomization hypothesis holds for this null hypothesis using the group of permutations, many such tests

are readily available.

To be concrete, for real-valued observations, one might base a permutation test on the test statistic

Tn+1 = Xn+1 − n−1
∑n
i=1Xi. (Or, one may wish to consider |Tn+1|.) One may view the test statistic as a

measure of conformity of Xn+1 with the remaining data. Let X̄n+1 = (n+ 1)−1
∑n+1
i=1 Xi. Then,

Tn+1 = (1 +
1

n
)Xn+1 −

n+ 1

n
X̄n+1 ,

so that rejecting for large Tn+1 is equivalent to rejecting for large Xn+1 (since X̄n+1 is permutation invari-

ant). The acceptance region of (the possibly conservative) nonrandomized permutation test takes the form

(compare with (4))

{Xn+1 : Xn+1 ≤ T (k)(X1, . . . , Xn+1)} , (50)

where T (k)(X1, . . . , Xn+1) is the kth order statistic among the n+1 observations, where k = d(n+1)(1−α)e

and dce is the smallest integer greater than or equal to c. Equivalently, and more in line with the current

literature on conformal inference, the upper bound may be represented as Xn,(k), which is the kth largest

among just X1, . . . , Xn. A lower prediction bound can be obtained in the same way by considering −Tn+1.

Alternatively, one can get a two-sided interval based on the test statistic |Xn+1 −med(X1, . . . , Xn)|, where

med(X1, . . . , Xn) is a median of X1, . . . , Xn. Still another choice replaces the median by the sample mean.

Remark 8.1. Note three things. First, the above construction can be viewed as a special case of a two-sample

permutation test previously considered based on the two samples X1, . . . , Xn and Xn+1. Second, the number

of permutations, (n+ 1)! is reduced dramatically because one only needs to consider the
(
n+1
n

)
combinations

of distinct values for Tn+1. Finally, in the case that all observations are distinct (with probability one), then

the region (50) has exact coverage 1− α if (n+ 1)(1− α) is an integer.

8.2 Conformal Prediction Intervals

More generally, one may wish to predict Yn+1 having observed (X1, Y1), . . . , (Xn, Yn) and Xn+1. The above

generalizes almost verbatim. The goal is to construct a prediction region

Ŝn = Ŝn (1− α, (X1, Y1), . . . , (Xn, Yn), Xn+1)

that satisfies

P{Yn+1 ∈ Ŝn} ≥ 1− α . (51)

As in (49), first construct En+1 to satisfy

P{((X1, Y1), . . . , (Xn+1, Yn+1) ∈ En+1} ≥ 1− α . (52)
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Then, one may construct Ŝn from En+1 by taking

Ŝn = {y : (X1, Y1), . . . , (Xn, Yn), (Xn+1, y) ∈ En+1} .

Then, (51) is satisfied as before.

First, to construct En+1, as before, simply let En+1 be the acceptance region of a level α test of the

null hypothesis that ((X1, Y1), . . . , (Xn+1, Yn+1)) is exchangeable. Such tests may be constructed using

permutation tests. For example, suppose f̂n+1(x) = f̂n+1((X1, Y1), . . . , (Xn+1, Yn+1)) is a generic predictor

for an unobserved Y having observed X = x, assumed symmetric in its n + 1 arguments. (Of course, this

includes the case the fn+1 is specified or obtained from an auxiliary sample.) Then, one possible test statistic

is the fitted residual

Tn+1 = |Yn+1 − f̂n+1(Xn+1)| .

Now one applies a permutation test by recomputing this test statistic, or what is called a score function in

the conformal prediction literature, over permutations of the data and then finding the kth largest value.

As in the case of just testing exchangeability of X1, . . . , Xn+1, there are really only n + 1 permutations

or combinations required. However, the procedure can be computationally quite intensive. By the duality

with the testing problem previously mentioned, in order to determine whether a particular value of Yn+1,

say y, belongs in the prediction set, one must apply a permutation test based on the data

(X1, Y1), . . . , (Xn, Yn), (Xn+1, y) .

Note that the predictor may change with y, and so we write f̂n+1,y for the predictor function, whose

dependence on the fixed value y is made explicit. Let k = d(n+ 1)(1− α)e as before. Define

ti = |Yi − f̂n+1,y(Xi)| .

Let T
(k)
y be the kth largest among t1, . . . tn. Then, y is included in the prediction region if

tn+1,y = |y − f̂n+1,y(Xn+1)| ≤ T (k)
y .

We emphasize that the construction results in a valid 1 − α prediction region regardless of whether or not

the fitted f̂n+1 is a reasonable predictor function. The key point is that, if (X1, Y1), . . . , (Xn+1, Yn+1) are

assumed exchangeable, then so are the n+ 1 random values |Yi − f̂n+1((X1, Y1), . . . , (Xn+1, Yn+1))| .

In order to determine the prediction region, the above computation must be carried out for every y. If

the range of y values is continuous, then this may require discretization of y values as well. One simple

modification is to use a holdout or auxiliary sample to construct the predictor f̂ , in which case the compu-

tational burden is dramatically reduced. The usual approach then requires splitting the data, so that f̂ is
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constructed on one part of the data and the prediction region on the remaining part. See Ritzwoller and

Romano (2023) for a method that ensures that the residual randomness induced by data splitting is small.

9 Approximate Randomization Tests

Our analysis so far has considered settings in which the randomization hypothesis holds exactly (often for

only a subset of the null hypothesis of interest). We then studied the large-sample behavior of certain tests

when the randomization hypothesis does not hold. In this section, we consider instead settings in which the

randomization hypothesis holds only approximately, for large samples, in a sense to be made precise below.

As we will see, such a theory can be fruitfully applied for inference in a variety of complicated settings. Below,

to conserve space, we focus our discussion on regression with clustered data when, in particular, there are

a “small” number of clusters. Here, “small” means that there are a fixed number of clusters that do not

diverge with the sample size. This setting is sufficiently general to accommodate a variety of applications

– time series regression, differences-in-differences with a “small” number of clusters – but the underlying

idea is considerably more general and can be applied to many other contexts. See, in particular, Canay and

Kamat (2018) for an elegant application to regression discontinuity design.10

9.1 Approximate Symmetry

In order to describe the framework, we assume as before that we observed X(n) ∼ Pn ∈ Pn taking values in

a sample space Xn. We are interested in testing

H0 : Pn ∈ Pn,0 ,

where Pn,0 ⊆ Pn. The following assumption formalizes the sense in which the randomization hypothesis

holds approximately.

Assumption 9.1. Let Sn : Xn → S and G be a finite group of transformations g of S onto itself. Suppose

Sn = Sn(X(n))
d→ S under {Pn ∈ Pn,0 : n ≥ 1}, where gS

d
= S for all g ∈ G.

The proposed test mirrors the construction described in Section 2.2; the key difference is that the role of

X there is now played by Sn. Concretely, using the notation described in Section 2.2, the proposed test is

given by

φ(Sn) =


1 if T (Sn) > T (k)(Sn)

a(Sn) if T (Sn) = T (k)(Sn)

0 if T (Sn) < T (k)(Sn)

,

10Cattaneo et al. (2015) also develops a method based on randomization for inference on a regression discontinuity.
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where

a(Sn) =
Mα−M+(Sn)

M0(Sn)
.

Canay et al. (2017) show that the above test is approximately level α in the sense described by the

following theorem:

Theorem 9.1. Suppose {Pn ∈ Pn,0 : n ≥ 1} satisfies Assumption 9.1; T : S → R is continuous; g : S → S

is continuous for all g ∈ G; and, for any two distinct g ∈ G and g′ ∈ G, either T (gs) = T (g′s) for all s ∈ S

or P{T (gS) 6= T (g′S)} = 1. Then,

EPn [φ(Sn)]→ α

as n→∞ under {Pn ∈ Pn,0 : n ≥ 1}.

In order to help explain the need for the conditions concerning ties, it is useful to provide some intuition

for the theorem. The key insight is that the randomization test φ(Sn) only depends on {T (gSn) : g ∈ G}

through its ordered values. To prove the theorem, it therefore suffices to show that when Sn converges to S

almost surely (by appealing, e.g., to a suitable almost sure representation theorem) that these ordered values

are preserved asymptotically as well. Other ways of ensuring that this property is satisfied are available; see,

e.g., Canay and Kamat (2018) for some such conditions.

9.2 Clustered Data

A large class of applications of the preceding machinery share the following structure. Suppose that

Pn,0 = {Pn ∈ Pn : θ(Pn) = θ0} ,

where θ(Pn) ∈ Rd is some parameter of interest and θ0 is some pre-specified value. Suppose further that

the the data X(n) can be grouped into q clusters X
(n)
1 , . . . , X

(n)
q and, for 1 ≤ j ≤ q, there are estimators

θ̂n,j = θ̂n,j(X
(n)
j ) using only the data in the jth cluster such that

Sn(X(n)) =
√
n(θ̂n,1 − θ0, . . . , θ̂n,q − θ0)

d→ N(0,Σ)

under {Pn ∈ Pn,0 : n ≥ 1}, where Σ = diag(Σ1, . . . ,Σq). When this is the case, it is easy to see that As-

sumption 9.1 is satisfied with G = {±1}q and gs = (g1, . . . , gq)(s1, . . . , sq) = (g1s1, . . . , gqsq). Furthermore,

Canay et al. (2017) show that the remaining requirements of Theorem 9.1 are satisfied with

Tn(Sn) = qS̄′nΣ̂−1n S̄n ,
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where S̄n = 1
q

∑
1≤j≤q Sn,j and Σ̂n = 1

q

∑
1≤j≤q S̄nS̄

′
n. When d = 1, Canay et al. (2017) show that these

conditions are also satisfied for

Tn(Sn) =
|S̄n|√

1
q−1

∑
1≤j≤q(Sn,j − S̄n)2

. (53)

We now informally discuss several instances in which the structure described above arises naturally in

applications; see Canay et al. (2017) for a more formal discussion of these examples. Of course, the most

obvious such example is one in which the grouping of the data is given by the nature of the observations,

as in the case of data consisting of observations from villages or schools. Suppose that the parameter of

interest is one or more of coefficients of an ordinary least squares estimand, and that this quantity is invariant

with respect to the distribution of data across clusters. In this case, under assumptions that ensure that

dependence within a cluster is sufficiently weak to permit application of suitable central limit theorems and

laws of large numbers, and dependence across clusters is sufficiently weak to ensure the diagonal structure

of Σ, the preceding structure is satisfied with θ̂n,j being the ordinary least squares estimator using the jth

cluster of data only.

In the preceding example, a caveat is that the ordinary least squares estimand must be well-defined

within each cluster. This property may not hold when, e.g., there are variables that are constant within

a cluster, as is the case when treatment status is assigned at the level of the cluster. In this case, it may

be necessary to pool one or more clusters together to form even larger clusters, and then apply the above

approach to this coarsened clustering of the data. Canay et al. (2017) employ such an approach in the

context of differences-in-differences designs.

Finally, this structure arises naturally in time series settings. In that case, the clusters can be defined to

be “blocks” of consecutive observations. The quantity q must therefore be specified by the user and plays

the role of a tuning parameter. Suppose that that the parameter of interest is again one or more coefficients

of an ordinary least squares estimand, and that this quantity is invariant with respect to the distribution of

data across clusters. This property would certainly hold under a suitable stationarity assumption. Under

assumptions that again ensure that dependence is sufficiently weak across time, so as to permit application

of appropriate central limit theorems and laws of large numbers, the preceding structure is satisfied with

θ̂n,j being the ordinary least squares estimator using the jth cluster of data only. In particular, the diagonal

structure of Σ is itself ensured when the dependence across time is sufficiently weak.

Remark 9.1. Confidence regions may, of course, be constructed using test inversion, as usual. Cai et al.

(2023) show that when d = 1 and the test statistic in (53) is employed, the resulting confidence regions are

in fact convex, i.e., they are intervals.

Remark 9.2. In the special case where d = 1, the idea of grouping the data in this way and constructing

estimators satisfying (15) has been previously proposed by Ibragimov and Müller (2010). They propose to

test the null hypothesis considered in this subsection by rejecting when Tn(Sn) defined in (53) exceeds the
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1 − α/2 quantile of the t-distribution with q − 1 degrees of freedom. By exploiting a remarkable result by

Bakirov and Szekely (2006), they show that this test has limiting rejection probability no greater than the

nominal level under the null hypothesis whenever α ≤ .083 and q ≥ 2 or when α ≤ .10 and 2 ≤ q ≤ 14. Such

results, however, are only available for d = 1. Furthermore, the proposed test can be quite conservative under

the null hypothesis in the sense that its limiting rejection probability may be far below the nominal level

when the Σj are not all equal. Canay et al. (2017) show that this feature leads the test to be considerably

less powerful than the randomization-based test described above in simulations, and further develop some

theoretical optimality properties of the randomization-based test in the limiting normal model.

Remark 9.3. A popular alternative to inference in settings with clustered data is the cluster wild bootstrap

proposed by Cameron et al. (2008). This approach is especially popular in settings with a “small” number

of clusters, but to the best of our knowledge the only analysis of its behavior in such settings is contained

in Canay et al. (2021), who provide conditions under which the limiting rejection probability under the

null hypothesis is no greater than the nominal level in an asymptotic framework like the one described

above in which the number of clusters remained fixed with the sample size. These results are derived by

linking its behavior in a fashion similar to the tests described in this section to the behavior of a suitable

randomization test based off of the group of sign changes. Their analysis shows, in particular, that rather

restrictive homogeneity conditions on the distribution of covariates across clusters appear to be required for

the validity of the cluster wild bootstrap in such settings.
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